

Progress Software

Publication date 11 Aug 2011
Copyright © 2001-2011 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements -- See Third Party Acknowledgements on page 15.

Table of Contents
Preface ... 11

Open Source Project Resources ... 12
Document Conventions ... 13
Third Party Acknowledgements ... 15

Deploying a Standalone Router ... 17
Introduction to Standalone Deployment ... 18
Defining a Standalone Main Method ... 20
Adding Components to the Camel Context .. 22
Adding RouteBuilders to the Camel Context .. 24
Running a Standalone Application .. 26

Deploying into a Spring Container ... 27
Introduction to Spring Deployment ... 28
Defining a Spring Main Method ... 30
Spring Configuration ... 31
Running a Spring Application .. 34

Components ... 35
CORBA ... 36
CXF Component .. 37

Introduction to CXF Component ... 38
Address Endpoint URI ... 40
Bean Endpoint URI .. 42
Programming with CXF Messages .. 45
Filtering Message Headers ... 53

File Component ... 60
JMS Component .. 62
SOAP ... 70
Websphere MQ Component .. 71

3

4

List of Figures
1. Standalone Router ... 18
2. Router Deployed in a Spring Container 28
3. Relay Filter Architecture .. 53

5

6

List of Tables
1. CXF URI Query Options ... 40
2. Attributes of cxf:cxfEndpoint Element .. 42
3. Child Elements of cxf:cxfEndpoint .. 43
4. CXF Data Formats .. 45
5. File URI Query Options .. 60
6. File URI Message Headers ... 61
7. JMS URI Query Options ... 63
8. MQ URI Query Options .. 71

7

8

List of Examples
1. Standalone Main Method ... 20
2. Adding a Component to the Camel Context 22
3. Adding a RouteBuilder to the Camel Context 24
4. Spring Main Method ... 30
5. Basic Spring XML Configuration ... 31
6. Configuring Components in Spring .. 32
7. MessageRelayHeaders Interface ... 54
8. Sample Binding Namespaces .. 55
9. Sample Relay Filter Implementation ... 57

9

10

Preface
Open Source Project Resources ... 12
Document Conventions ... 13
Third Party Acknowledgements ... 15

11

Open Source Project Resources

Apache Incubator CXF Web site: http://cxf.apache.org/

User's list: <user@cxf.apache.org>

Apache Tomcat Web site: http://tomcat.apache.org/

User's list: <users@tomcat.apache.org>

Apache ActiveMQ Web site: http://activemq.apache.org/

User's list: <users@activemq.apache.org>

Apache Camel Web site: http://camel.apache.org

User's list: <users@camel.apache.org>

12

http://cxf.apache.org/
http://tomcat.apache.org/
http://activemq.apache.org/
http://camel.apache.org

Document Conventions

Typographical conventions This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents portions
of code and literal names of items such as classes, functions,

fixed width

variables, and data structures. For example, text might refer
to the javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and commands
represent variable values you must supply, such as arguments

Fixed width

italic
to commands or path names for your particular system. For
example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and introduce
new terms.

Italic

Bold words in normal text represent graphical user interface
components such as menu commands and dialog boxes. For
example: the User Preferences dialog.

Bold

Keying conventions This book uses the following keying conventions:

When a command’s format is the same for multiple platforms,
the command prompt is not shown.

No prompt

A percent sign represents the UNIX command shell prompt
for a command that does not require root privileges.

%

A number sign represents the UNIX command shell prompt
for a command that requires root privileges.

#

The notation > represents the MS-DOS or Windows command

prompt.

>

13

Horizontal or vertical ellipses in format and syntax descriptions indicate that material has been
eliminated to simplify a discussion.

...

Brackets enclose optional items in format and syntax descriptions.[]

Braces enclose a list from which you must choose an item in format and syntax descriptions.{ }

In format and syntax descriptions, a vertical bar separates items in a list of choices enclosed
in {} (braces).

|

Admonition conventions This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may also
provide information about workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be encountered.
These errors are unlikely to cause damage to your data or your systems.

Warnings display information about errors that may cause damage to your
systems. Possible damage from these errors include system failures and
loss of data.

14

Third Party Acknowledgements
Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright
(c) 2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgement may appear in
the software itself, if and wherever such third-party acknowledgements
normally appear. 4. The names "Apache", "The Jakarta Project", "Commons",
and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", "Apache" nor may "Apache"
appear in their name without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

==

This software consists of voluntary contributions made by many individuals
on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see http://www.apache.org/.

15

http://www.apache.org/

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3.
The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

16

Deploying a Standalone Router
This chapter describes how to deploy the Java Router in standalone mode. This means that you can deploy the
router independent of any container, but some extra programming steps are required.

Introduction to Standalone Deployment ... 18
Defining a Standalone Main Method ... 20
Adding Components to the Camel Context .. 22
Adding RouteBuilders to the Camel Context .. 24
Running a Standalone Application .. 26

17

Introduction to Standalone Deployment

Overview Figure 1 on page 18 gives an overview of the architecture for a router
deployed in standalone mode.

Figure 1. Standalone Router

Camel context The Camel context represents the router service itself. In contrast to most
container deployment modes (where the Camel context instance is normally
hidden), the standalone deployment requires you to explicitly create and
initialize the Camel context in your application code. As part of the initialization
procedure, you explicitly create components and route builders and add them
to the Camel context.

Components Components represent connections to particular kinds of destination—for
example, a file system, a Web service, a JMS broker, a CORBA service, and
so on. In order to read and write messages to and from various destinations,

18

Deploying a Standalone Router

you need to configure and register components, by adding them to the Camel
context.

RouteBuilders The RouteBuilder classes represent the core of your router application,
because they define the routing rules. In a standalone deployment, you are
responsible for managing the lifecycle of RouteBuilder objects. In particular,
you must create instances of the route builder objects and register them, by
adding them to the Camel context.

19

Introduction to Standalone Deployment

Defining a Standalone Main Method

Overview In the case of a standalone deployment, it is up to the application developer
to create, configure and start a Camel context instance (which encapsulates
the core of the router functionality). For this purpose, you should define a
main() method that performs the following key tasks:

1. Create a Camel context instance.

2. Add components to the Camel context.

3. Add routing rules (RouteBuilder objects) to the Camel context.

4. Start the Camel context, so that it activates the routing rules you defined.

Example of a standalone main
method

Example 1 on page 20 shows the standard outline of a standalone main()
method, which is defined in an example class, CamelJmsToFileExample.
This example shows how to initialize and activate a Camel context instance.

Example 1. Standalone Main Method

package org.apache.camel.example.jmstofile;

import javax.jms.ConnectionFactory;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;
import org.apache.camel.CamelTemplate;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.jms.JmsComponent;
import org.apache.camel.impl.DefaultCamelContext;

public final class CamelJmsToFileExample {

private CamelJmsToFileExample() {
}

public static void main(String args[]) throws Exception
{ ❶

CamelContext context = new DefaultCamelContext(); ❷

// Add components to the Camel context. ❸

20

Deploying a Standalone Router

// ... (not shown)

// Add routes to the Camel context. ❹
// ... (not shown)

// Start the context.
context.start(); ❺

// End of main thread.
}

}

Where the preceding code can be explained as follows:

❶ Define a static main() method to serve as the entry point for running

the standalone router.
❷ For a standalone router, you need to instantiate a Camel context

explicitly. There is just one implementation of CamelContext currently

available, the DefaultCamelContext class.

❸ The first step in initializing the Camel context is to add any components
that your need for your routes (see Adding Components to the Camel
Context on page 22).

❹ The second step in initializing the Camel context is to add one or more
RouteBuilder objects (see Adding RouteBuilders to the Camel
Context on page 24).

❺ The CamelContext.start() method creates a new thread and starts

to process incoming messages using the registered routing rules. If the
main thread now exits, the Camel context sub-thread remains active
and continues to process messages. Typically, you can stop the router
by typing Ctrl-C in the window where you launched the router

application (or by sending a kill signal in UNIX). If you want more

control over stopping the router process, you could use the
CamelContext.stop()method in combination with an instrumentation

library (such as JMX).

21

Defining a Standalone Main Method

Adding Components to the Camel Context

Relationship between components
and endpoints

The essential difference between components and endpoints is that, when
configuring a component, you provide concrete connection details (for example,
hostname, IP port, and so on), whereas, when specifying an endpoint URI,
you provide abstract identifiers (for example, queue name, service name, and
so on). It is also possible to define multiple endpoints for each component.
For example, a single message broker (represented by a component) can
support connections to multiple different queues (represented by endpoints).

The relationship between an endpoint and a component is established through
a URI prefix. Whenever you add a component to the Camel context, the
component gets associated with a particular URI prefix (specified as the first
argument to the CamelContext.addComponent() method). Endpoint URIs
that start with that prefix are then automatically parsed by the associated
component.

Example of adding a component Example 2 on page 22 shows the outline of the standalone main() method,
highlighting details of how to add a JMS component to the Camel context.

Example 2. Adding a Component to the Camel Context

public final class CamelJmsToFileExample {
...
public static void main(String args[]) throws Exception

{
CamelContext context = new DefaultCamelContext();

// Add components to the Camel context.
ConnectionFactory connectionFactory = new ActiveMQCon

nectionFactory("vm://localhost?broker.persistent=false"); ❶
context.addComponent("test-jms", JmsComponent.jmsCom

ponentAutoAcknowledge(connectionFactory)); ❷

// Add routes to the Camel context.
// ... (not shown)

// Start the context.
context.start();

// End of main thread.
}

}

22

Deploying a Standalone Router

Where the preceding code can be explained as follows:

❶ Before you can add a JMS component to the Camel context, you need
to create a JMS connection factory (an implementation of
javax.jms.ConnectionFactory). In this example, the JMS connection

factory is implemented by the FUSE Message Broker class,
ActiveMQConnectionFactory. The broker URL, vm://localhost,

specifies a broker that is co-located in the same Java Virtual Machine
(JVM) as the router. The broker library automatically instantiates the
new broker as soon as you try to send a message to it.

❷ Add a JMS component named test-jms to the Camel context. This

example uses a JMS componenet with the auto-acknowledge option set
to true. This implies that messages received from a JMS queue will
automatically be acknowledged (receipt confirmed) by the JMS
component.

23

Adding Components to the Camel Context

Adding RouteBuilders to the Camel Context

Overview RouteBuilder objects represent the core of your router application, because
they embody the routing rules you want to implement. In the case of a
standalone deployment, you have to manage the lifecycle of your
RouteBuilder objects explicitly, which involves instantiating the
RouteBuilder classes and adding them to the Camel context.

Example of adding a RouteBuilder Example 3 on page 24 shows the outline of the standalone main() method,
highlighting details of how to add a RouteBuilder object to the Camel
context.

Example 3. Adding a RouteBuilder to the Camel Context

package org.apache.camel.example.jmstofile;
...
public class JmsToFileRoute extends RouteBuilder { ❶

public void configure() {
from("test-jms:queue:test.queue").to("file://test");

❷
// set up a listener on the file component
from("file://test").process(new Processor() { ❸

public void process(Exchange e) {
System.out.println("Received exchange: " +

e.getIn());
}

});
}

}

public final class CamelJmsToFileExample {
...
public static void main(String args[]) throws Exception

{
CamelContext context = new DefaultCamelContext();

// Add components to the Camel context.
// ... (not shown)

// Add routes to the Camel context.
context.addRoutes(new JmsToFileRoute()); ❹

// Start the context.
context.start();

24

Deploying a Standalone Router

// End of main thread.
}

}

Where the preceding code can be explained as follows:

❶ Define a class that inherits from
org.apache.camel.builder.RouteBuilder in order to define your

routing rules. If required, you can define multiple RouteBuilder classes.

❷ The first route implements a hop from a JMS queue to the file system.
That is, messages are read from the JMS queue, test.queue, and then

written to files in the test directory. The JMS endpoint, which has a

URI prefixed by test-jms, uses the JMS component registered in

Example 2 on page 22.
❸ The second route reads (and deletes) the messages from the test

directory and displays the messages in the console window. To display
the messages, the route implements a custom processor (implemented
inline). See for more details about implementing custom processors.

❹ Call the CamelContext.addRoutes()method to add a RouteBuilder

object to the Camel context.

25

Adding RouteBuilders to the Camel Context

Running a Standalone Application

Downloading ActiveMQ Before running this sample code, you must download ActiveMQ 5.x, and add
relevant jar files to the classpath.

Setting the CLASSPATH Configure your application's CLASSPATH as follows:

1. Add ArtixRoot/lib/it-soa-router.jar to the CLASSPATH.

Running the application Assuming that you have coded a main() method, as described in Defining
a Standalone Main Method on page 20, you can run your application using
Sun's J2SE interpreter with the following command:

java org.apache.camel.example.jmstofile.CamelJmsToFileExample

If you are developing the application using a Java IDE (for example, Eclipse1

or IntelliJ2), you can run your application by selecting the
CamelJmsToFileExample class and directing the IDE to run the class.
Normally, an IDE would automatically choose the static main() method as
the entry point to run the class.

1 http://www.eclipse.org/
2 http://www.jetbrains.com/idea/

26

Deploying a Standalone Router

http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

Deploying into a Spring Container
This chapter describes how to deploy the Java Router into a Spring container. A notable feature of the Spring
container deployment is that it enables you to specify routing rules in an XML configuration file.

Introduction to Spring Deployment ... 28
Defining a Spring Main Method ... 30
Spring Configuration ... 31
Running a Spring Application .. 34

27

Introduction to Spring Deployment

Overview Figure 2 on page 28 gives an overview of the architecture for a router
deployed into a Spring container.

Figure 2. Router Deployed in a Spring Container

Spring wrapper class To instantiate a Spring container, Java Router provides the Spring wrapper
class, org.apache.camel.spring.Main, which exposes methods for creating
a Spring container. The wrapper class simplifies the procedure for creating a
Spring container, because it includes a lot of boilerplate code required for the
router. For example, the wrapper class specifies a default location for the
Spring configuration file and adds the Camel context schema to the Spring
configuration, enabling you to specify routes using the camelContext XML
element.

Lifecycle of RouteBuilder objects The Spring container is responsible for managing the lifecycle of
RouteBuilder objects. In practice, this means that the router developer need
only define the RouteBuilder classes. The Spring container will find and

28

Deploying into a Spring Container

instantiate the RouteBuilder objects after it starts up (see Spring
Configuration on page 31).

Spring configuration file The Spring configuration file is a key feature of the Spring container. Through
the Spring configuration file you can instantiate and link together Java objects.
You can also configure any Java object using the dependency injection feature.

In addition to these generic features of the Spring configuration file, Java
Router defines an extension schema that enables you to define routing rules
in XML.

Component configuration In order to use certain transport protocols in your routes, you must configure
the corresponding component and add it to the Camel context. You can add
components to the Camel context by defining bean elements in the Spring
configuration file (see Configuring components on page 32).

29

Introduction to Spring Deployment

Defining a Spring Main Method

Overview Java Router defines a convenient wrapper class for the Spring container. To
instantiate a Spring container instance, all that you need to do is write a short
main()method that delegates creation of the container to the wrapper class.

Example of a Spring main method Example 4 on page 30 shows how to define a Spring main() method for
your router application.

Example 4. Spring Main Method

package my.package.name;

public class Main {
public static void main(String[] args) {

org.apache.camel.spring.Main.main(args);
}

}

Where org.apache.camel.spring.Main is the Spring wrapper class, which
defines a static main() method that instantiates the Spring container.

Spring options

30

Deploying into a Spring Container

Spring Configuration

Overview You can use a Spring configuration file to configure the following basic aspects
of a router application:

• Specify the Java packages that contain RouteBuilder classes.

• Define routing rules in XML.

• Configure components.

In addition to these core aspects of router configuration, you can take
advantage of the generic Spring mechanisms for configuring and linking
together Java objects within the Spring container.

Location of the Spring
configuration file

The Spring configuration file for your router application must be stored at the
following location, relative to your CLASSPATH:

META-INF/spring/camel-context.xml

Basic Spring configuration Example 5 on page 31 shows a basic Spring XML configuration file that
instantiates and activates RouteBuilder classes defined in the
my.package.name Java package.

Example 5. Basic Spring XML Configuration

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans.xsd ❶

http://camel.apache.org/schema/spring ht
tp://camel.apache.org/camel/schema/spring/camel-spring.xsd">
❷

<camelContext xmlns="http://act
ivemq.apache.org/camel/schema/spring"> ❸

<package>my.package.name</package> ❹

31

Spring Configuration

</camelContext>
</beans>

The preceding configuration can be explained as follows:

❶ This line specifies the location of the Spring framework schema. The
URL represents a real, physical location from where you can download
the schema. The version of the Spring schema currenlty supported by
Java Router is Spring 3.0.

❷ This line specifies the location of the Camel context schema. The URL
shown in this example always points to the latest version of the schema.

❸ Define a camelContext element, which belongs to the namespace,

http://camel.apache.org/schema/spring.

❹ Use the package element to specify one or more Java package names.

As it starts up, the Spring wrapper automatically instantiates and
activates any RouteBuilder classes that it finds in the specified

packages.

Configuring components To configure router components, use the generic Spring bean configuration
mechanism (which implements a dependency injection configuration pattern).
That is, you define a Spring bean element to create a component instance,
where the class attribute specifies the full class name of the relevant Java
Router component. Bean properties on the component class can then be set
using the Spring properties element. Using the dependency injection
mechanism, you can determine what properties you can set by consulting
the JavaDoc for the relevant component.

Example 6 on page 32 shows how to configure a JMS component using
Spring configuration. This component configuration enables you to access
endpoints of the format jms:[queue|topic]:QueueOrTopicName in your
routing rules.

Example 6. Configuring Components in Spring

<?xml version="1.0" encoding="UTF-8"?>

<beans ... >

<camelContext useJmx="true" xmlns="ht
tp://camel.apache.org/schema/spring">

<!-- Java packages (not shown) ... -->
</camelContext>

<!-- Configure the default ActiveMQ broker URL -->

32

Deploying into a Spring Container

<bean id="jms" class="org.apache.camel.component.jms.JmsCom
ponent"> ❶

<property name="connectionFactory"> ❷
<bean class="org.apache.activemq.ActiveMQConnectionFact

ory"> ❸
<property name="brokerURL" value="vm://local

host?broker.persistent=false&broker.useJmx=false"/> ❹
</bean>

</property>
</bean>

</beans>

Where the preceding configuration can be explained as follows:

❶ Use the class attribute to specify the name of the component class—in

this example, we are configuring the JMS component class,
JmsComponent. The id attribute specifies the prefix to use for JMS

endpoint URIs. For example, with the id equal to jms you can connect

to an endpoint like jms:queue:FOO.BAR in your application code.

❷ When you set the property named, connectionFactory, Spring

implicitly calls the JmsComponent.setConnectionFactory()method

to initialize the JMS component at run time.
❸ The connection factory property is initialized to be an instance of

ActiveMQConnectionFactory (that is, an instance of a FUSE Message

Broker message queue).
❹ When you set the brokerURL property on

ActiveMQConnectionFactory, Spring implicitly calls the

setBrokerURL() method on the connection factory instance. In this

example, the broker URL, vm://localhost, specifies a broker that is

co-located in the same Java Virtual Machine (JVM) as the router.The
broker library automatically instantiates the new broker as soon as you
try to send a message to it.

For more details about configuring components in Spring, (see
Components on page 35)

33

Spring Configuration

Running a Spring Application

Downloading ActiveMQ You must first download ActiveMQ version 5.x, and include relevant jar files
in the classpath.

Setting the CLASSPATH Configure your application's CLASSPATH as follows:

1. Add all of the JAR files in ArtixRoot/lib/it-soa-router.jar to the

CLASSPATH.

2. Add the directory containing META-INF/spring/camel-context.xml to

the CLASSPATH. For example, if your Spring configuration file is
/var/my_router_app/META-INF/spring/camel-context.xml, you

would add the following directory to the CLASSPATH:

/var/my_router_app

Running the application Assuming that you have coded a main() method, as described in Defining
a Spring Main Method on page 30, you can run your application using Sun's
J2SE interpreter with the following command:

java my.package.name.Main

If you are developing the application using a Java IDE (for example, Eclipse1

or IntelliJ2), you can run your application by selecting the
my.package.name.Main class and directing the IDE to run the class.
Normally, an IDE would automatically choose the static main() method as
the entry point to run the class.

1 http://www.eclipse.org/
2 http://www.jetbrains.com/idea/

34

Deploying into a Spring Container

http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.jetbrains.com/idea/

Components
In Java Router, a component is essentially an integration plug-in, which can be used to enable integration with
different kinds of protocol, containers, databases, and so on. By adding a component to your Camel context, you
gain access to a particular type of endpoint, which can then be used as the sources and targets of your routes.
This reference chapter provides an overview of the components available in Java Router.

CORBA ... 36
CXF Component .. 37

Introduction to CXF Component ... 38
Address Endpoint URI ... 40
Bean Endpoint URI .. 42
Programming with CXF Messages .. 45
Filtering Message Headers ... 53

File Component ... 60
JMS Component .. 62
SOAP ... 70
Websphere MQ Component .. 71

35

CORBA

Overview The CORBA protocol does not have a dedicated component. It is supported
through the CXF component—see CXF Component on page 37.

36

Components

CXF Component
Introduction to CXF Component ... 38
Address Endpoint URI ... 40
Bean Endpoint URI .. 42
Programming with CXF Messages .. 45
Filtering Message Headers ... 53

37

CXF Component

Introduction to CXF Component

Overview The CXF component enables you to access endpoints using the Apache CXF1

open services framework (primarily Web services). Because CXF has support
for multiple different protocols, you can use a CXF component to access many
different kinds of service. For example, CXF supports the following bindings
(message encodings):

• SOAP 1.1.

• SOAP 1.2

• CORBA

And CXF supports the following transports:

• HTTP

• RESTful HTTP

• IIOP (transport for CORBA only)

• JMS

• WebSphere MQ

Adding the CXF component There is no need to add the CXF component to the Camel context; it is
automatically loaded by the router core.

Configuring the CXF component
to use log4j

The default logger for the CXF component is java.util.logging. To
configure the CXF component to use the Apache log4j logger instead, perform
the following steps:

1. Create a text file named META-INF/cxf/org.apache.cxf.logger, with

the following contents:

org.apache.cxf.common.logging.Log4jLogger

This file should contain only this text, on a single line.

1 http://incubator.apache.org/cxf/

38

Components

http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/

2. Add the file to your Classpath, taking care that it precedes the camel-cxf

JAR file.

Endpoint URI format There are two different URI formats supported by the CXF component, as
follows:

• Address Endpoint URI on page 40.

• Bean Endpoint URI on page 42.

39

Introduction to CXF Component

Address Endpoint URI

Endpoint URI format The CXF address endpoint URI conforms to the following format:

cxf://Address[?QueryOptions]

Where Address is the physical address of the endpoint, whose format is
binding/transport specific (for example, the HTTP URL format, http://, for
SOAP/HTTP or the corbaloc format, corbaloc:iiop:, for CORBA/IIOP). You
can optionally add a list of query options, ?QueryOptions, in the following
format:

?Option=Value&Option=Value&Option=Value...

URI query options The CXF URI supports the query options described in Table 1 on page 40.

Table 1. CXF URI Query Options

DescriptionOption

The endpoint address (overriding the value that appears in the fist part of the CXF URI).address

The format used to represent messages internally. Can be one of POJO, PAYLOAD, or MESSAGE.dataFormat

The value of the service class depends on whether the endpoint is a producer or a consumer,
as follows:

serviceClass

• Producer endpoint—the name of the service endpoint interface (SEI). Do not specify a proxy
class here. The CXF component will automatically determine the proxy type and create a
proxy instance for you.

• Consumer endpoint—the name of the class that implements the service (which derives from
the SEI). If the implementation class is appropriately annotated (following JSE-1812), it also
determines the WSDL location, service name, and port name for the WSDL endpoint.

The port QName (defaults to the value of the annotation in the service class, if one is specified).portName

The service QName (defaults to the value of the annotation in the service class, if one is specified).serviceName

Location of the WSDL contract file (defaults to the value of the annotation in the service class,
if one is specified).

wsdlURL

2 http://jcp.org/en/jsr/detail?id=181

40

Components

http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181

DescriptionOption

(POJO data format only) If a route connects a CXF consumer endpoint to a CXF producer
endpoint, this boolean option (set on the producer endpoint) determines whether the SOAP

relayHeaders

headers received from the consumer endpoint are relayed to the producer endpoint and whether
SOAP headers set by the producer endpoint are sent back to the consumer endpoint. Default is
true (do relay headers).

When this option is true, headers can also be filtered by installing custom filters of
MessageHeadersRelay type. For details, see Filtering Message Headers on page 53.

41

Address Endpoint URI

Bean Endpoint URI

Endpoint URI format The CXF bean endpoint URI conforms to the following format:

cxf:bean:BeanID[?QueryOptions]

BeanID is the ID of a CXF endpoint bean that is registered in the Spring bean
registry. To create the associated CXF endpoint bean, add a cxf:cxfEndpoint
element to your Spring configuration, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org//schema/cxf"
...>

...
<cxf:cxfEndpoint id="BeanID"

serviceClass="serviceClassName"
address="https://localhost:58001/GreeterService/Basi

cAuthPort"
wsdlURL="WsdlLocation"
endpointName="ns:portName"
serviceName="ns:serviceName"
xmlns:ns="XmlNamespace">

</cxf:cxfEndpoint>
...

</beans>

You can optionally add a list of query options, ?QueryOptions—see
Table 1 on page 40 for a list of available options.

cxfEndpoint attributes The cxf:cxfEndpoint element supports the following attributes:

Table 2. Attributes of cxf:cxfEndpoint Element

DescriptionAttribute

The location of the WSDL contract. Can be a Classpath URL, classpath:, file URL, file:, or
remote URL, http:.

wsdlURL

The WSDL service name (from the name attribute of the relevant wsdl:service element in the
WSDL contract). The format of this attribute is NsPrefix:ServiceName, where NsPrefix is a
namespace prefix valid at this scope.

serviceName

The WSDL endpoint name (from the name attribute of the relevant wsdl:port element in the
WSDL contract). The format of this attribute is NsPrefix:EndpointName, where NsPrefix is
a namespace prefix valid at this scope.

endpointName

42

Components

DescriptionAttribute

The WSDL endpoint's address, which overrides the value from the WSDL contract.address

The name of the CXF Bus that provides the context for this JAX-WS endpoint.bus

The class name of the SEI (Service Endpoint Interface) class, which could optionally have JSR181
annotations.

serviceClass

cxfEndpoint child elements The cxf:cxfEndpoint element can optionally contain the following child
elements:

Table 3. Child Elements of cxf:cxfEndpoint

DescriptionChild Element

The incoming interceptors for this endpoint. A list of bean elements or ref
elements.

cxf:inInterceptors

The incoming fault interceptors for this endpoint. A list of bean elements or ref
elements.

cxf:inFaultInterceptors

The outgoing interceptors for this endpoint. A list of bean elements or ref
elements.

cxf:outInterceptors

The outgoing fault interceptors for this endpoint. A list of bean elements or ref
elements.

cxf:outFaultInterceptors

A properties map, which sets the JAX-WS endpoint's bean properties. See Using
cxf:properties to set endpoint properties on page 44.

cxf:properties

A JAX-WS handler list for the JAX-WS endpoint. See JAX-WS Configuration3.cxf:handlers

Enables you to specify the DataBinding for this endpoint, where the data binding
can be instantiated using the <bean class="MyDataBinding"/> syntax.

cxf:dataBinding

Enables you to specify the BindingFactory for this endpoint, where the binding
factory can be instantiated using the <bean class="MyBindingFactory"/>
syntax.

cxf:binding

The features that hold the interceptors for this endpoint. A list of bean elements
or ref elements.

cxf:features

The schema locations available to the endpoint. A list of schemaLocation
elements.

cxf:schemaLocations

3 http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

43

Bean Endpoint URI

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

DescriptionChild Element

The service factory for this endpoint, where the service factory can be instantiated
using the <bean class="MyServiceFactory"/> syntax.

cxf:serviceFactory

Using cxf:properties to set
endpoint properties

You can use the cxf:properties child element to set any of the bean
properties listed in Table 1 on page 40. For example, you can set the CXF
endpoint's dataFormat and setDefaultBus bean properties as follows:

<cxf:cxfEndpoint id="testEndpoint" address="http://local
host:9000/router"

serviceClass="org.apache.camel.component.cxf.HelloService"

endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>
<entry key="dataFormat" value="MESSAGE"/>
<entry key="setDefaultBus" value="true"/>

</cxf:properties>
</cxf:cxfEndpoint>

44

Components

Programming with CXF Messages

Overview A CXF endpoint allows you to select different data formats for the propagated
messages, as shown in Table 4 on page 45. This subsection describes how
to access or modify the different data formats in CXF messages.

Table 4. CXF Data Formats

DescriptionData Format

With the plain old Java object (POJO) format, the message
body contains a list of the Java parameters to the method

POJO

being invoked on the target server. The type of the POJO
message body is
org.apache.cxf.message.MessageContentsList.

The message body contains the contents of the soap:body
element after message configuration in the CXF endpoint is

PAYLOAD

applied. The type of the PAYLOAD message body is
List<org.w3c.dom.Element>.

The message body contains the raw message that is received
from the transport layer. The type of the MESSAGE message
body is InputStream.

MESSAGE

How the data format affects CXF
interceptors

The choice of data format causes CXF interceptors in certain phases to be
skipped. This is unavoidable, for technical reasons. Some CXF interceptor
phases are logically incompatible with certain data formats. The choice of
data format affects CXF interceptor phases as follows:

• POJO—All CXF interceptor phases are processed as normal.

• PAYLOAD—CXF interceptor phases are processed, except for the following

phases:

• In phases—UNMARSHAL, PRE_LOGICAL, PRE_LOGICAL_ENDING,

POST_LOGICAL, POST_LOGICAL_ENDING, PRE_INVOKE.

• Out phases—MARSHAL, MARSHAL_ENDING, PRE_LOGICAL,

PRE_LOGICAL_ENDING, POST_LOGICAL, POST_LOGICAL_ENDING.

45

Programming with CXF Messages

• MESSAGE—Only the following CXF interceptor phases are processed (all

others being skipped):

• In phases—RECEIVE, USER_STREAM, INVOKE, POST_INVOKE.

• Out phases—PREPARE_SEND, PREPARE_SEND_ENDING, USER_STREAM,

WRITE, SEND.

Tip
For optimum efficiency, select the lowest level data format compatible
with the kind of processing you need to perform. The data formats
can be ranked in order of efficiency (starting with the most efficient),
as follows: MESSAGE, PAYLOAD, POJO.

Combining router processors and
CXF interceptors

When designing a route that processes CXF messages, typically the best
strategy is to use a combination of router processors and CXF interceptors.
Each type of processing has its strengths and weaknesses:

• CXF interceptors offer the advantage that you can access the message at
all levels of marshalling and parsing. For example, you can add a CXF
interceptor to process a SOAP message in its raw format and add another
interceptor to process the parsed operation parameters.

By contrast, in a router processor, you can only access the message in the
form selected by the data format option.

• Router processors enable you to apply the power of the Java DSL to process
and route CXF messages. For example, you can easily apply the content
based routing pattern to send a CXF message to various endpoints,
depending on the contents of a header or an operation parameter.

You also need to remember to take into account the fact that when the
PAYLOAD or MESSAGE data formats are selected, some of the CXF interceptor
phases are skipped.

Limitations on data format
conversions

It is not straightforward to convert between the various message data formats,
POJO, PAYLOAD, and MESSAGE, and automatic type conversions between
the data formats are not supported. It is relatively easy, however, to convert
the MESSAGE data format into an XML document, which can then be

46

Components

processed in a similar manner to the PAYLOAD data format. For example,
given an exchange instance, exchange, that originates from a CXF endpoint:

// Java
import org.apache.camel.component.cxf.CxfMessage;
...
CxfMessage cxfMessage = (CxfMessage) exchange.getIn();
org.w3c.dom.Node document = cxfMessage.getMessage().getCon
tent(org.w3c.dom.Node.class);

Identifying the data format The easiest way to check the data format in a processor is to look up the
CxfConstants.DATA_FORMAT_PROPERTY property on the exchange. For
example, given an exchange instance, exchange, that originates from a CXF
endpoint:

// Java
import org.apache.camel.component.cxf.CxfConstants;
...
String dataFormat = exchange.getProperty(CxfCon
stants.DATA_FORMAT_PROPERTY).toString();

The returned data format can have one of the values: POJO, PAYLOAD, or
MESSAGE.

Accessing a message in POJO
data format

The POJO data format is based on the CXF invoker4. The message header
has a CxfConstants.OPERATION_NAME property, which contains the name
of the operation to invoke, and the message body is a list of the SEI method
parameters. The following example shows how to access the contents of a
POJO message in the implementation of a Processor.

// Java
public class PersonProcessor implements Processor {

private static final transient Log LOG = LogFactory.get
Log(PersonProcessor.class);

public void process(Exchange exchange) throws Exception
{

LOG.info("processing exchange in camel");

BindingOperationInfo boi = (BindingOperationInfo)ex
change.getProperty(BindingOperationInfo.class.toString());

if (boi != null) {

4 http://cwiki.apache.org/CXF20DOC/invokers.html

47

Programming with CXF Messages

http://cwiki.apache.org/CXF20DOC/invokers.html
http://cwiki.apache.org/CXF20DOC/invokers.html

LOG.info("boi.isUnwrapped" + boi.isUnwrapped());
}

// Get the parameters list which element is the holder.

MessageContentsList msgList = (MessageContentsList)ex
change.getIn().getBody();

Holder<String> personId = (Holder<String>)msg
List.get(0);

Holder<String> ssn = (Holder<String>)msgList.get(1);
Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length()
== 0) {

LOG.info("person id 123, so throwing exception");

// Try to throw out the soap fault message
org.apache.camel.wsdl_first.types.UnknownPerson

Fault personFault =
new org.apache.camel.wsdl_first.types.Unknown

PersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl_first.UnknownPersonFault

fault =
new org.apache.camel.wsdl_first.UnknownPerson

Fault("Get the null value of person name", personFault);
// Since camel has its own exception handler

framework, we can't throw the exception to trigger it
// We just set the fault message in the exchange

for camel-cxf component handling
exchange.getFault().setBody(fault);

}

name.value = "Bonjour";
ssn.value = "123";
LOG.info("setting Bonjour as the response");
// Set the response message, first element is the re

turn value of the operation,
// the others are the holders of method parameters

exchange.getOut().setBody(new Object[] {null, personId,
ssn, name});

}

48

Components

}

Creating a message in POJO data
format

To create a message in POJO data format, first specify the operation name
in the CxfConstants.OPERATION_NAME message header. Next, add the
method parameters to a list and set the message with this parameter list.
The response message's body is of MessageContentsList type. For example:

// Java
Exchange senderExchange = new DefaultExchange(context, Exchange
Pattern.InOut);
final List<String> params = new ArrayList<String>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME,
ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", sender
Exchange);

org.apache.camel.Message out = exchange.getOut();
// The response message's body is an MessageContentsList which
first element is the return value of the operation,
// If there are some holder parameters, the holder parameter
will be filled in the reset of List.
// The result will be extract from the MessageContentsList
with the String class type
MessageContentsList result = (MessageContentsList)out.get
Body();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = Cas
tUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-
8", responseContext.get(org.apache.cxf.message.Message.ENCOD
ING));
assertEquals("Reply body on Camel is wrong", "echo " +
TEST_MESSAGE, result.get(0));

Accessing a message in PAYLOAD
data format

You can use Header.HEADER_LIST as the key to set or get the SOAP headers
and use the List<Element> type to set or get SOAP body elements. For
example:

49

Programming with CXF Messages

// Java
import org.apache.camel.component.cxf.CxfMessage;
import org.apache.cxf.headers.Header;
import org.apache.cxf.binding.soap.SoapHeader;
import org.apache.cxf.helpers.CastUtils;
import org.w3c.dom.Element;
import java.util.List;
...
from(routerEndpointURI).process(new Processor() {

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception

{
Message inMessage = exchange.getIn();
CxfMessage message = (CxfMessage) inMessage;
List<Element> elements = message.getMes

sage().get(List.class);
assertNotNull("We should get the payload elements

here" , elements);
assertEquals("Get the wrong elements size" , ele

ments.size(), 1);
assertEquals("Get the wrong namespace URI" , ele

ments.get(0).getNamespaceURI(), "ht
tp://camel.apache.org/pizza/types");

List<SoapHeader> headers = CastUtils.cast((List<?>)mes
sage.getMessage().get(Header.HEADER_LIST));

assertNotNull("We should get the headers here", head
ers);

assertEquals("Get the wrong headers size", head
ers.size(), 1);

assertEquals("Get the wrong namespace URI" , ((Ele
ment)(headers.get(0).getObject())).getNamespaceURI(), "ht
tp://camel.apache.org/pizza/types");

}

})
.to(serviceEndpointURI);

Accessing a message in
MESSAGE data format

To access a message in MESSAGE dat format, retrieve the message from the
underlying CXF message as a java.io.InputStream type. For example:

// Java
import org.apache.camel.component.cxf.CxfMessage;
import java.io.InputStream;
...
from(routerEndpointURI).process(new Processor() {

50

Components

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception

{
Message inMessage = exchange.getIn();
CxfMessage message = (CxfMessage) inMessage;
InputStream rawMessage = (InputStream) message.getMes

sage().getContent(InputStream.class);

// Continue processing the raw message from InputStream

...
}

})
.to(serviceEndpointURI);

Alternatively, you could access the InputStream stream as follows:

InputStream rawMessage = (InputStream) exchange.getIn().get
Body();

How to throw a SOAP fault You can use the throwFault() DSL command to throw a SOAP fault, and
this works for the POJO, PAYLOAD, and MESSAGE data formats. First of all,
you need to define a SOAP fault, as follows:

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, Soap
Fault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

Once you have created the fault, SOAP_FAULT, you can throw it as follows:

from(routerEndpointURI).throwFault(SOAP_FAULT);

If your CXF endpoint is configured to use the MESSAGE data format, you
could set the the SOAP Fault message in the message body and set the
response code in the message header. For example:

from(routerEndpointURI).process(new Processor() {

public void process(Exchange exchange) throws Exception
{

Message out = exchange.getOut();
// Set the message body with the
out.setBody(this.getClass().getResourceAsStream("Soap

51

Programming with CXF Messages

FaultMessage.xml"));
// Set the response code here
out.setHeader(org.apache.cxf.message.Message.RE

SPONSE_CODE, new Integer(500));
}

});

How to propagate CXF request
and response contexts

The CXF client API provides a way to invoke an operation with request and
response context. For example, to set the request context and get the response
context for an operation that is invoked through a CXF producer endpoint,
you can use code like the following:

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEnd
pointUri(), new Processor() {

public void process(final Exchange exchange) {
final List<String> params = new ArrayL

ist<String>();
params.add(TEST_MESSAGE);
// Set the request context to the inMessage
Map<String, Object> requestContext = new

HashMap<String, Object>();
requestContext.put(BindingProvider.ENDPOINT_AD

DRESS_PROPERTY, JAXWS_SERVER_ADDRESS);
exchange.getIn().setBody(params);
exchange.getIn().setHeader(Client.REQUEST_CON

TEXT , requestContext);
exchange.getIn().setHeader(CxfConstants.OPER

ATION_NAME, GREET_ME_OPERATION);
}

});
org.apache.camel.Message out = exchange.getOut();
// The output is an object array, the first element

of the array is the return value
Object[] output = out.getBody(Object[].class);
LOG.info("Received output text: " + output[0]);
// Get the response context form outMessage
Map<String, Object> responseContext = Cas

tUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("Get the wrong wsdl opertion name",

"{http://apache.org/hello_world_soap_http}greetMe", respon
seContext.get("javax.xml.ws.wsdl.operation").toString());

52

Components

Filtering Message Headers

Overview When more than one CXF endpoint appears in a route, you need to decide
whether or not to allow headers to propagate between the endpoints. By
default, the headers are relayed back and forth between the endpoints, but
in many cases it might be necessary to filter the headers or to block them
altogether. You can control header propagation by applying filters to producer
endpoints (filtering is not applicable to consumer endpoints).

The simplest kind of route that can illustrate CXF header filtering is as follows:

from("cxf:bean:A").to("cxf:bean:B?relayHeaders=true");

In this route, filtering is applied to request headers and response headers
before and after entering the producer endpoint, as shown in
Figure 3 on page 53.

Figure 3. Relay Filter Architecture

Important
Header filtering is currently only supported for the POJO data format.

In-band headers An in-band header is a header that is explicitly defined as part of the WSDL
binding contract for an endpoint.

Out-of-band headers An out-of-band header is a header that is serialized over the wire, but is not
explicitly part of the WSDL binding contract. In particular, the SOAP binding

53

Filtering Message Headers

permits out-of-band headers, because the SOAP specification does not require
headers to be defined in the WSDL contract.

Semantics of the relayHeaders
option

By default, the relayHeaders option is true on all CXF producer endpoints.
In this case, in-band headers and out-of-band headers are affected differently:
in-band headers are all relayed, without exception, while out-of-band headers
are subjected to filtering. When the relayHeaders option is set explicitly to
false on a CXF producer endpoint, both in-band headers and out-of-band
headers are completely blocked.

The semantics of the relayHeaders option can be summarized as follows:

Out-of-band headersIn-band headers

FilterRelay allrelayHeaders=true

BlockBlockrelayHeaders=false

MessageHeadersRelay interface When the relayHeaders option is enabled, out-of-band headers are subject
to filtering, where relay filters are implemented by sub-classing the
MessageRelayHeaders interface, as shown in Example 7 on page 54.

Example 7. MessageRelayHeaders Interface

package org.apache.camel.component.cxf.headers;

import java.util.List;
import org.apache.cxf.headers.Header;

public interface MessageHeadersRelay {
List<String> getActivationNamespaces();

void relay(
Direction direction,
List<Header> from,
List<Header> to

);
}

Implementing the relay() method The MessageRelayHeaders.relay() method is reponsible for applying
header filtering. Filtering is applied both before and after an operation is

54

Components

invoked on the producer endpoint. Hence, there are two directions to which
filtering is applied, as follows:

Direction.OUT

When the direction parameter equals Direction.OUT, the filter is

being applied to a request entering the producer endpoint, shown as
Relay filter Direction.OUT in Figure 3 on page 53. In this case, from

refers to the headers coming from endpoint A and to refers to the headers

relayed to endpoint B.

Direction.IN

When the direction parameter equals Direction.IN, the filter is

being applied to a response leaving the producer endpoint, shown as
Relay filter Direction.IN in Figure 3 on page 53. In this case, from

refers to the headers returned from endpoint B and to refers to the

headers relayed to endpoint A.

Filtering is effectively implemented by selectively populating the to parameter.
Headers added to the to parameter are relayed and headers omitted from
the to parameter are blocked.

Binding filters to XML
namespaces

It is possible to register multiple relay filters against a given CXF endpoint.
The CXF endpoint selects the appropriate filter to use based on the XML
namespace of the WSDL binding protocol (for example, the namespace for
the SOAP 1.1 binding or for the SOAP 1.2 binding). If a header's namespace
is unknown, the DefaultMessageHeadersRelay (which relays all headers)
is selected by default.

To bind a filter to one or more namespaces, implement the
getActivationNamespaces()method, which returns the list of bound XML
namespaces.

Identifying the namespace to bind
to

Example 8 on page 55 illustrates how to identify the namespaces to which
you can bind a filter. This example shows the WSDL file for a Bank server
that exposes SOAP endpoints.

Example 8. Sample Binding Namespaces

<wsdl:definitions targetNamespace="http://cxf.apache.org/schem
as/cxf/idl/bank"

xmlns:tns="http://cxf.apache.org/schemas/cxf/idl/bank"

55

Filtering Message Headers

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
...
<wsdl:binding name="BankSOAPBinding" type="tns:Bank">

<soap:binding style="document" transport="http://schem
as.xmlsoap.org/soap/http" />

<wsdl:operation name="getAccount">
...

</wsdl:operation>
...

</wsdl:binding>
...

</wsdl>

From the soap:binding tag, you can infer that namespace associated with
the SOAP binding is http://schemas.xmlsoap.org/wsdl/soap/.

Default filters There are two filters that are pre-installed in the relay filter map by default:

SoapMessageHeadersRelay

This filter is designed to filter standard SOAP headers. It is bound to the
following XML namespaces:

http://schemas.xmlsoap.org/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap12/

DefaultMessageHeadersRelay

This filter is selected by default, if the header's namespace is unknown.
This filter relays all headers.

Note
If you want to override the default SOAP filter,
SoapMessageHeadersRelay, you can do so by adding a custom
filter. But you must make sure that you bind your custom filter to all
of the namespaces currently covered by the SOAP filter, otherwise
you will get a runtime error.

Implementing a custom filter If you want to implement your own custom filter, define a class that inherits
from the MessageHeadersRelay interface and implement its methods as
described in this section. For example, Example 9 on page 57 shows an

56

Components

example of a custom filter, CustomHeadersRelay, that binds to the SOAP
namespaces (covering both SOAP 1.1 and SOAP 1.2) and relays all of the
headers that pass through it.

Example 9. Sample Relay Filter Implementation

// Java
package org.apache.camel.component.cxf.soap.headers;

import java.util.Arrays;
import java.util.List;

import org.apache.camel.component.cxf.headers.Direction;
import org.apache.camel.component.cxf.headers.MessageHeader
sRelay;
import org.apache.cxf.headers.Header;

import org.apache.cxf.binding.soap.SoapBindingConstants;
import org.apache.cxf.binding.soap.SoapBindingFactory;

public class CustomHeadersRelay implements MessageHeadersRelay
{

private static final List<String> ACTIVATION_NS =
Arrays.asList(SoapBindingConstants.SOAP11_BINDING_ID,

SoapBindingFactory.SOAP_11_BINDING,
SoapBindingFactory.SOAP_12_BINDING);

public CustomHeadersRelay() {
}

public List<String> getActivationNamespaces() {
return ACTIVATION_NS;

}

public void relay(
Direction direction,
List<Header> from,
List<Header> to

) {
for (Header header : from) {

to.add(header);
}

}

57

Filtering Message Headers

}

Deploying a custom filter To apply a custom relay filter to a CXF endpoint, perform the following steps:

1. Create an instance of your custom filter class.

2. Add a java.util.List (or any java.util.Collection type) containing

your custom filter to the
org.apache.camel.cxf.message.headers.relays endpoint bean

property. If you want to apply multiple custom filters, simply add them to
the list.

The following configuration fragment shows how to deploy the
CustomHeadersRelay filter, applying it to a specific CXF endpoint.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://act

ivemq.apache.org/camel/schema/cxfEndpoint"
... >

<cxf:cxfEndpoint id="serviceExtraRelays"
address="http://localhost:6060/HeaderSer

vice/"
serviceClass="org.apache.camel.compon

ent.cxf.soap.headers.HeaderTester"
endpointName="tns:SoapPortCustomRelay"
serviceName="tns:HeaderService"
wsdlURL="soap_header.wsdl"
xmlns:tns="http://apache.org/camel/compon

ent/cxf/soap/headers">

<cxf:properties>
<entry key="org.apache.camel.cxf.message.headers.relays">

<list>
<ref bean="customHeadersRelay"/>

</list>
</entry>

</cxf:properties>
</cxf:cxfEndpoint>
...
<bean id="customHeadersRelay"

class="org.apache.camel.component.cxf.soap.headers.Cus
tomHeadersRelay"/>

58

Components

...
</beans>

59

Filtering Message Headers

File Component

Overview The file component provides access to the file system, enabling you to read
messages from files and write messages to files. It is useful for simple
demonstrations and testing purposes.

Adding the file component There is no need to add the file component to the Camel context; it is
embedded in the router core.

Endpoint URI format A file endpoint has a URI that conforms to the following format:

file://FileOrDirectory?QueryOptions

?Option=Value&Option=Value&Option=Value...

URI query options The file URI supports the query options described in Table 5 on page 60.

Table 5. File URI Query Options

DescriptionDefaultOption

Milliseconds before polling of the file/directory starts.1000initialDelay

Milliseconds before the next poll of the file/directory.500delay

If true, poll once after the initial delay.falseuseFixedDelay

If true and the file URI specifies a directory path, the file component polls

for changes in all sub-directories.

truerecursive

If true, lock the file for the duration of the processing.truelock

Only process files that match the regular expression pattern.nullregexPattern

If true, delete the file after processing (the default is to move it).falsedelete

If true, do not move, delete, or modify the file in any way. This option is

good for read only data, or for ETL type requirements.

falsenoop

Specifies the string to prepend to the file's path name when moving it. For
example to move processed files into the done directory, set this option to

done/.

nullmoveNamePrefix

60

Components

DescriptionDefaultOption

Specifies the string to append to the file's path name when moving it. For
example to rename processed files from foo to foo.old set this value to

.old.

nullmoveNamePostfix

When writing to a file, if this option is true, append to the end of the file;

if this option is false, replace the file.

trueappend

Message headers The message headers shown in Table 6 on page 61 can be used to affect
the behavior of the file component.

Table 6. File URI Message Headers

DescriptionHeader

Specifies the output file name (relative to the endpoint directory) to be used
for the output message when sending to the endpoint. If this is not present,
a generated message ID is used instead.

org.apache.camel.file.name

61

File Component

JMS Component

Overview The JMS component allows messages to be sent to (or consumed from) a
JMS queue or topic. The JMS component uses Springs JMS support for
declarative transactions, Spring's JmsTemplate for sending, and a
MessageListenerContainer for consuming.

Endpoint URI format JMS endpoints have the following URI format:

jms:[temp:][queue:|topic:]DestinationName[?Options]

Where DestinationName is a JMS queue or topic name. By default, the
DestinationName is interpreted as a queue name. For example, to connect
to the queue, FOO.BAR, use:

jms:FOO.BAR

You can include the optional queue: prefix, if you prefer:

jms:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to
connect to the topic, Stocks.Prices, use:

jms:topic:Stocks.Prices

You can access temporary queues using the following URI format:

jms:temp:queue:DestinationName

Or temporary topics using the following URI format:

jms:temp:topic:DestinationName

This URI format enables multiple routes or processors or beans to refer to the
same temporary destination. For example, you could create three temporary
destinations and use them in routes as inputs or outputs by referring to them
by name.

You can optionally add a list of query options, ?Options, in the following
format:

62

Components

?Option=Value&Option=Value&Option=Value...

URI query options JMS endpoints support the following URI query options:

Table 7. JMS URI Query Options

DescriptionDefaultName

If true, a JMS consumer endpoint accepts messages

while it is stopping.

falseacceptMessagesWhileStopping

The JMS acknowledgement name, which is one of
the following: TRANSACTED, CLIENT_ACKNOWLEDGE,

AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE.

AUTO_ACKNOWLEDGEacknowledgementModeName

The JMS acknowledgement mode, defined as an
Integer. Allows you to set vendor-specific extensions

-1acknowledgementMode

to the acknowledgment mode. For the regular
modes, set the acknowledgementModeName

property instead.

If true, the router will always make a JMS message

copy of the message when it is passed to the

falsealwaysCopyMessage

producer for sending. Copying the message is needed
in some situations, such as when a
replyToDestinationSelectorName is set (the

router automatically sets alwaysCopyMessage to

true if a replyToDestinationSelectorName is

set)

If true, the consumer container starts up

automatically.

trueautoStartup

Sets the cache level ID for the underlying JMS
resources.

-1cacheLevel

Sets the cache level name for the underlying JMS
resources.

CACHE_CONNECTION

(but when

cacheLevelName

SPR-3890 is fixed,
it will be
CACHE_CONSUMER).

Sets the JMS client ID. This value must be unique
and can only be used by a single JMS connection

nullclientId

63

JMS Component

DescriptionDefaultName

instance. It is typically required only for durable topic
subscriptions. You may prefer to use virtual topics
instead.

The consumer type determines which Spring JMS
listener should be used. This option can have one
of the following values:

DefaultconsumerType

• Default—for

DefaultMessageListenerContainer.

• Simple—for

SimpleMessageListenerContainer.

• ServerSessionPool—for serversession.

ServerSessionMessageListenerContainer.

Where each of these classes belongs to the
org.springframework.jms.listener Java
package. If you set useVersion102=true, the router
will use the corresponding JMS 1.0.2 Spring classes
instead.

Specifies the default number of concurrent
consumers.

1concurrentConsumers

The default JMS connection factory to use for the
listenerConnectionFactory and

nullconnectionFactory

templateConnectionFactory, if neither are

specified.

Is persistent delivery used by default?truedeliveryPersistent

Specifies the JMS destination object to use on this
endpoint

nulldestination

Specifies the JMS destination name to use on this
endpoint

nulldestinationName

Do you want to ignore the JMSReplyTo header and
so treat messages as InOnly by default and not send
a reply back?

falsedisableReplyTo

64

Components

DescriptionDefaultName

The durable subscriber name for specifying durable
topic subscriptions.

nulldurableSubscriptionName

Enables eager loading of JMS properties as soon as
a message is received. This feature is generally

falseeagerLoadingOfProperties

inefficient, because the JMS properties might not be
required. But eager loading can be useful for testing
purpose, to ensure JMS properties can be understood
and handled correctly.

The JMS Exception Listener used to be notified of
any underlying JMS exceptions.

nullexceptionListener

If true, the properties, deliveryMode, priority,

and timeToLive, are used when sending messages.

falseexplicitQosEnabled

If true, the listener session is exposed when

consuming messages.

trueexposeListenerSession

Specify the limit for idle executions of a receive task,
not having received any message within its

1idleTaskExecutionLimit

execution. If this limit is reached, the task will shut
down and leave receiving to other executing tasks
(in the case of dynamic scheduling; see the
maxConcurrentConsumers setting).

Enables you to use your own implementation of the
org.springframework.jms.core.JmsOperations

nulljmsOperations

interface. The router uses the JmsTemplate class

by default. Can be used for testing purpose.

The JMS connection factory used for consuming
messages.

nulllistenerConnectionFactory

Specifies the maximum number of concurrent
consumers.

1maxConcurrentConsumers

The number of messages per task.1maxMessagesPerTask

The Spring Message Converter.nullmessageConverter

If true, message IDs are added to sent messages.truemessageIdEnabled

Should timestamps be enabled by default on sending
messages.

truemessageTimestampEnabled

65

JMS Component

DescriptionDefaultName

The password for the connector factory.nullpassword

Values of > 1 specify the message priority when
sending, if the explicitQosEnabled property is
specified.

-1priority

Set to true, if you want to send message using the

QoS settings specified on the message, instead of
the QoS settings on the JMS endpoint

falsepreserveMessageQos

Specifies whether to inhibit the delivery of messages
published by its own connection

falsepubSubNoLocal

Sets the JMS Selector which is an SQL 92 predicate
used to apply to messages to filter them at the

nullselector

message broker. You may have to encode special
characters such as = as %3D.

The timeout when receiving messages.nonereceiveTimeout

The recovery interval.nonerecoveryInterval

Specifies how temporary queues are used for the
replyTo destination sharing strategy. This option
can take one of the following values:

endpointreplyToTempDestinationAffinity

• component—a single temporary queue is shared

among all producers for a given component
instance.

• endpoint—a single temporary queue is shared

among all producers for a given endpoint instance.

• producer—a single temporary queue is created

for each producer.

Provides an explicit replyTo destination which

overrides any incoming value of
Message.getJMSReplyTo().

nullreplyToDestination

When using a shared queue (that is, not using a
temporary reply queue), this option sets the name
of a JMS selector that is used to filter replies.

nullreplyToDestinationSelectorName

66

Components

DescriptionDefaultName

Specifies whether persistent delivery is used by
default for replies.

truereplyToDeliveryPersistent

The timeout when sending messages.20000requestTimeout

The JMS ServerSessionFactory if you wish to use
ServerSessionFactory for consumption.

nullserverSessionFactory

Enabled by default if you specify a
durableSubscriberName and a clientId.

falsesubscriptionDurable

Allows you to specify a custom task executor for
consuming messages.

nulltaskExecutor

The JMS connection factory used for sending
messages.

nulltemplateConnectionFactory

Is a time to live specified when sending messages.nulltimeToLive

Specifies whether transacted mode is used for
sending/receiving messages.

falsetransacted

Specifies whether transacted mode is used with the
InOut exchange pattern.

falsetransactedInOut

The Spring transaction manager to use.nulltransactionManager

The name of the transaction to use.nulltransactionName

The timeout value of the transaction if using
transacted mode.

nulltransactionTimeout

The username for the connector factory.nullusername

Specifies whether JMSMessageID is used as the

JMSCorrelationID for InOutmessages. By default,

the router uses a GUID

falseuseMessageIDAsCorrelationID

Should the old JMS API be used.falseuseVersion102

Configuring in XML You can configure your JMS provider inside the Spring XML as follows:

<camelContext id="camel" xmlns="http://act
ivemq.apache.org/camel/schema/spring">
</camelContext>

<bean id="activemq" class="org.apache.camel.component.jms.Jm

67

JMS Component

sComponent">
<property name="connectionFactory">
<bean class="org.apache.activemq.ActiveMQConnectionFact

ory">
<property name="brokerURL" value="vm://local

host?broker.persistent=false"/>
</bean>

</property>
</bean>

You can configure as many JMS component instances as you wish and give
them a unique name using the id attribute. The preceding example creates
an activemq component. You could take a similar approach to configuring
MQSeries, TibCo, BEA, Sonic, and so on.

Once you have a named JMS component you can then refer to endpoints
within that component using URIs. For example, given the component name,
activemq, you can then refer to destinations as
activemq:[queue:|topic:]DestinationName. This works by the
SpringCamelContext lazily fetching components from the spring context for
the scheme name you use for Endpoint URIs and having the Component
resolve the endpoint URIs.

Using JNDI to find the connection
factory

If you are using a J2EE container, you might want to lookup JNDI to find your
ConnectionFactory rather than use the usual <bean>mechanism in spring.
You can do this using Spring's factory bean or the new XML namespace. For
example:

<bean id="weblogic" class="org.apache.camel.component.jms.Jm
sComponent">
<property name="connectionFactory" ref="myConnectionFact

ory"/>
</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-
name="java:env/ConnectionFactory"/>

Enabling transactions A common requirement is to consume from a queue in a transaction then
process the message using the Camel route. To do this just ensure you set
the following query options on the component/endpoint:

?transacted=true&transactionManager=TranssactionManager

68

Components

Where the TransactionManager is typically the JmsTransactionManager.

Durable subscriptions If you wish to use durable topic subscriptions, you need to specify both the
clientId and durableSubscriberName query options. Note that the value
of the clientId must be unique and can only be used by a single JMS
connection instance in your entire network. You may prefer to use Virtual
Topics instead to avoid this limitation. For more background, see Durable
Messaging5.

Adding message headers When using message headers; the JMS specification states that header names
must be valid Java identifiers. So, by default, the JMS component will ignore
any headers which do not match this rule. Try to name your headers as if
they are valid Java identifiers. One benefit of this is that you can then use
your headers inside a JMS Selector (whose SQL92 syntax mandates headers
in the form of Java identifiers).

Cache settings If you are using XA or running in a J2EE container, you might need to set the
cacheLevelName to be CACHE_NONE. We have found it necessary to disable
caching with JBoss with TibCo EMS and JTA/XA.

Using the JMS component with
ActiveMQ

The JMS component exploits Spring 2's JmsTemplate for sending messages.
This is not ideal for use in a non-J2EE container and typically requires a
caching JMS provider to avoid poor performance. So, if you intend to use
Apache ActiveMQ6 as your Message Broker, we recommend that you either:

• Use the ActiveMQ component, which is already configured to use ActiveMQ
efficiently, or

• Use the PoolingConnectionFactory in ActiveMQ.

5 http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
6 http://activemq.apache.org/

69

JMS Component

http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/

SOAP

Overview The SOAP protocol does not have a dedicated component. It is supported
through the CXF component—see CXF Component on page 37.

70

Components

Websphere MQ Component

Overview The Websphere MQ component is a specialized JMS component that is used
to integrate IBM's Websphere MQ into the Artix Java router. Because the
Websphere MQ component is derived from the JMS component, all of the
properties provided by the JMS component are also available to the Websphere
MQ component. In addition, the Websphere MQ component automatically
configures the underlying IBM connection factory for you.

Note
You must have a license for the Websphere MQ product to use this
component. The required Websphere libraries are not provided with
Artix.

Adding the MQ component There is no need to add the Websphere MQ component to the Camel context;
it is automatically loaded by the router core.

Endpoint URI format The Websphere MQ component has a URI format that is almost identical to
the JMS URI format, except that the jms: prefix is replaced by mq:.

mq:[temp:][queue:|topic:]DestinationName[?Options]

For a detailed description of the analogous JMS URI format, see Endpoint
URI format on page 62.

URI query options MQ endpoints support all of the JMS query options—see Table 7 on page 63.
In addition, the MQ endpoints also support the following query options:

Table 8. MQ URI Query Options

DescriptionDefaultName

User name for the Websphere MQ connection.nulluserName

User password for the Websphere MQ connection.nulluserPassword

Same as the corresponding JMS option, with different default. The
value of this option has been optimized for Websphere MQ. Do not
change!

trueexplicitQosEnabled

71

Websphere MQ Component

DescriptionDefaultName

Same as the corresponding JMS option. The value of this option has
been optimized for Websphere MQ. Do not change!

truemessageIdEnabled

Same as the corresponding JMS option, with different default. The
value of this option has been optimized for Websphere MQ. Do not
change!

falsereplyToDeliveryPersistent

Same as the corresponding JMS option, with different default. The
value of this option has been optimized for Websphere MQ. Do not
change!

trueuseMessageIDAsCorrelationID

Demonstration code with
transaction propagation

In the Artix samples, there is an advanced demonstration that shows how to
configure the Java router to act as a bridge between FUSE Message Broker
(Apache ActiveMQ) and Websphere MQ, with full support for XA transaction
propagation. The demonstration code can be found at the following location:

ArtixRoot/java/samples/transports/jms/mqi_bridge

And the router configuration can be found in the following files:

mqi_bridge/src/bridge/com/iona/bridge/routes.xml
mqi_bridge/src/bridge/com/iona/bridge/components.xml

72

Components

	Table of Contents
	Preface
	Open Source Project Resources
	Document Conventions
	Third Party Acknowledgements

	Deploying a Standalone Router
	Introduction to Standalone Deployment
	Defining a Standalone Main Method
	Adding Components to the Camel Context
	Adding RouteBuilders to the Camel Context
	Running a Standalone Application

	Deploying into a Spring Container
	Introduction to Spring Deployment
	Defining a Spring Main Method
	Spring Configuration
	Running a Spring Application

	Components
	CORBA
	CXF Component
	Introduction to CXF Component
	Address Endpoint URI
	Bean Endpoint URI
	Programming with CXF Messages
	Filtering Message Headers

	File Component
	JMS Component
	SOAP
	Websphere MQ Component

