
Verastream Host Integrator
Design Tool Guide

Table of contents

4Welcome to Host Integrator

4Terminal Sessions from the Start Menu

5Referencing Web Service Files

5Referencing API Documentation

6Using the Design Tool

6Implementation Options

7Design Tool Features

7Connecting to a host

8Using models to encapsulate a host application

8Abstracting a host application

9Providing core runtime services

9Recording command lists

9Implementing preferences

9Providing online and offline design modes

10Working collaboratively

10Adding event handlers

11Planning the Host Integrator Project

11Planning the Host Integrator Project

13Host Integrator Components

17Development Process

19Learn to Use Host Integrator

43Using the Design Tool

43The Modeling Process: Getting Started

44Work Collaboratively

47Setting Up a Connection

60Configuring Sessions

115Importing Model Elements

121Adding Entities to a Model

130Adding Operations to an Entity

Table of contents

- 2/141 -

131Tables and Procedures

0Modeling Tips

0Using Regular Expressions

0Event Handlers

0Debugging Models

0Deploying Models

0Using Web Services

0Additional Resources

0Connectors and APIs

0Web Builder

0Using Web Builder

0Legal Notice

Table of contents

- 3/141 -

1. Welcome to Host Integrator

Verastream integration encapsulates host functionality into services for rapid re-use in new
applications. Verastream Host Integrator (VHI) contains these components:

Design Tool

You use the Design Tool to build host application models quickly and easily by navigating through
legacy host applications and selecting the appropriate fields.

Web Builder

After you create a model, you use Web Builder to generate and deploy a variety of Web projects;
including HTML 5 Web applications and objects for both Java and .NET environments. Web Builder
generates all the necessary project files so that the source code can be quickly viewed, modified,
and rebuilt using industry standard tools such as the latest versions of Visual Studio, Eclipse, and
Visual Basic.

Host Integrator Server

The Host Integrator server provides an enterprise production environment in which to deploy
your models. The Host Integrator servers support failover and load balancing using the
Administrative Console as a central management hub.

Administrative Console

You use the Administrative Console to deploy, configure, monitor, and optimize your Host
Integrator models and servers in a production environment

 Spend 30 minutes and use Design Tool and Web Builder to build and deploy a simple
Host Integrator application.

1.1 Terminal Sessions from the Start Menu
You can install VHI and have immediate access to your host. From the Start menu, choose either 3270
Terminal Session or 5250 Terminal Session, depending on your host type. You can also enter a known
address such as http://<server-name>:8081/Terminal3270 into your browser. An HTML 5 Web application
screen displays an host connection dialog where you can enter the appropriate connection information,
complete the host connection, and interact with your green screen host application. This feature gives
you access to your host applications without having to open the Design Tool or Web Builder and
without having to create and deploy a model.

• •

• •

• •

• •

1. Welcome to Host Integrator

- 4/141 -

Using Web Builder project properties for HTML 5 Web applications you can preconfigure a terminal
session with a host name and port number. This means you will not be prompted for this information
every time you launch the application. This configuration applies to the specific project you are creating
and not to the Start menu terminal session links.

1.2 Referencing Web Service Files
Web services are available after deployment in both SOAP and REST formats. Developers can use these
documents to identify inputs, outputs, and methods needed to consume the Web service.

You can access your Web service documents here:

List of WSDL documents for deployed models: http://<session server>:9680/vhi-ws

List of REST documents for deployed models: http://<session server>:9680/vhi-rs

Connect to model (non-pooled): Depending on whether you are accessing a SOAP or REST service -
http://<session server>:9680/vhi-ws/model/<model name>?wsdl or
http://<session server>:9680/vhi-rs/model/<model name>?json

Connect to session pool: Depending on whether you are accessing a SOAP or REST service -
http://<session server>:9680/vhi-ws/session/<pool name>?wsdl or http://
<session server>:9680/vhi-rs/session/<pool name>?json .

1.3 Referencing API Documentation
API documentation is provided for the Java, JDBC, C, and .NET connectors as well as two additional Host
Integrator APIs. See Connectors and APIs for information.

•

•

•

•

1.2 Referencing Web Service Files

- 5/141 -

2. Using the Design Tool

The Design Tool is a component of the Developer Kit for modeling and encapsulating an existing host
application for integration into client/server and Web applications.

Host Integrator Web Builder automatically generates projects, including Web applications, .NET class
libraries, and Java Beans.

Host Integrator Components

Planning the Host Integrator Project

Implementation Options

Design Tool Features

Development Process

2.1 Implementation Options

What is the host data you want to integrate into another environment or application?

If at all possible, plan on building a table that represents the host data in a way that can be
queried through an SQL statement. Does the data presentation and logic of the host data as
presented on the Web differ from the host application itself? If not, a simple rejuvenation may be
sufficient.

Will the host data be presented on a Web page for customers or users?

What is the Web presentation technology? Know the requirements and the environment where
the host data will be used. If you're not integrating the data with other applications, a simple
rejuvenation of the host application may be sufficient. Otherwise, you should plan on setting up
tables and procedures so that an external application, such as a Web service, has access to the
host data. This decision has a direct impact on how your build your model.

Know the development requirements for the external application.

Host Integrator provides APIs for integrating host data through SQL, ASP, ASP.NET, JSP, Web
Services, COM, and .NET. For a quick implementation, many of these options can be generated
using Host Integrator's Web Builder.

You can use Host Integrator with Microsoft’s Active Server Pages (ASP),ASP.NET, or a Java Server
Pages (JSP) environment. In this environment, you can use Host Integrator to give users access to
host data from a Web browser.

• •

• •

• •

• •

• •

• •

• •

• •

•

2. Using the Design Tool

- 6/141 -

You can use Host Integrator to make host data available to another client/server application,
whether or not it is Web-based.

Host Integrator support for object frameworks on application servers include Web Services, the
Component Object Model (COM), and .NET. Application server deployments are especially well-
suited for situations in which high volume host systems are extended to the Web. Additional
business logic can be developed to add more functionality and capabilities to the system without
any work or development required in the host system environment.

2.2 Design Tool Features

Connecting to a Host

Using Models to Encapsulate a Host Application

Abstracting a Host Application

Providing Core Runtime Services

Recording Command Lists

Implementing Preferences

Providing Online and Offline Design Modes

Working Collaboratively

Adding Event Handlers

You can use the following features to capture the functionality of your host application:

2.3 Connecting to a host
The Design Tool can connect to the following hosts:

•

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Host Models

IBM 3270 Models 2 (24x80) Normal and Extended, 3 (32x80) Normal and Extended, 4
(43x80) Normal and Extended, and 5 (27x132) Normal and Extended

IBM 5250 Models 3179-2, 3180-2 (132 Column Capable), 3196-A1, 3477-FC (132 Column
Capable), 3477-FG (132 Column Capable), 3486-BA, 3487-HA (132 Column
Capable), 3487-HC (132 Column Capable), 5251-11, and 5291-1

VT VT102, VT400-7, VT400-8, and VT52 terminals

2.2 Design Tool Features

- 7/141 -

You select the host connection type on the New Model or Session Setup dialog box, accessible from the
File or Connection menu respectively.

2.4 Using models to encapsulate a host application
The main feature of the Design Tool is the modeling feature, which enables a host expert to create a
model of a host application. First, you connect to a host via the Design Tool and then define entities for
terminal screens, which may include patterns for identification, attributes to specify the location to
input data, and one or more operations to allow programmed traversal of the host application, and
variables which can be mapped to various attributes or various entities.

In most cases, you will use tables and procedures to create an abstraction of the host data so that it can
be queried through a subset of the industry-standard Structure Query Language (SQL). See "Abstracting
a Host Application" below.

The model file (.modelx) is saved in the Design Tool and then copied to a Host Integrator Server. For
more information, see The Modeling Process.

2.5 Abstracting a host application
You can create procedures (and underlying tables) to add a database abstraction layer on top of your
host application model. Client application programmers can then access this database abstraction layer,
either by a direct call to a procedure or through a subset of the industry-standard Structured Query
Language (SQL). For an SQL query, the client application specifies a table, a set of input parameters, and
a set of desired output parameters. Host Integrator then returns the desired data to the client
application.

Host Models

HP HP2392A and HP 70092 terminals

2.4 Using models to encapsulate a host application

- 8/141 -

2.6 Providing core runtime services
In addition to the definition process, the Design Tool provides server-like services for the modeling and
procedure definitions. This permits the user to test and debug models and database procedures prior
to deployment. The model layer requires entity recognition, operation execution, and variable reads
and writes. The debug layer takes arbitrary input and resolves a query (or returns an error) or executes
a specified query.

2.7 Recording command lists
The command list recorder records host commands for operations required by the debug layer. On the
Model menu, point to Record and then click Start Recording to begin. For information about creating
login, logout, and move cursor command lists, see Command List Edit.

2.8 Implementing preferences
There are several functional user preferences that can be implemented, including creating default
names for attributes, automatic pattern generation, and proposing new operations when appropriate.
On the Settings menu, click Preferences for more information.

2.9 Providing online and offline design modes
The Design Tool has the ability to display in online and offline design modes. As each entity is defined,
two files are created to enable the design mode process.

A "screen snapshot," or a snapshot file contains the contents of the display memory and which
can then be available to the Design Tool for editing the corresponding entity in offline mode.

A Host Emulator trace file is a Telnet trace for the terminal screen that the Host Emulator can send
over a Telnet connection to simulate the screen being sent from the host.

Offline mode is available for all emulation options, while Host Emulator is available for IBM 3270 and
5250 emulations only.

• •

• •

2.6 Providing core runtime services

- 9/141 -

2.10 Working collaboratively
Host Integrator provides the ability for multiple developers to work similtaneously on a project. Models
are saved using the .modelx extension, which gives multiple developers the ability to work
collaboratively and merge their changes using a standard version control package, such as Git. When
you save a model as a modelx file, all entities, tables, and supporting files are converted into XML,
validated by an .xsd file, and saved in the models directory, under the modelx folder. See Working
Collaboratively.

You can also import portions of models for use in other models. This makes model creation more
efficient. Multiple developers can work on large models simultaneously and pull the various pieces
together at a later time. See Importing Model Elements for more information.

2.11 Adding event handlers
An event handler gives you the ability to customize the behavior of a model.

The Design Tool offers a variety of features that assist you in creating event handlers. The result is a Java
class that conforms to rules for event handling. This class is then mapped (attached) to specific objects
of a model to customize its behavior.

You can attach event handlers to events associated with the entire model, a life cycle event, or to
entities, attributes, operations, recordsets and recordset fields, and procedures. You can reuse a
handler in multiple models or with multiple objects of the same type within the same model.

If you're ready to begin modeling, see The Modeling Process.

More information

The Modeling Process

Working Collaboratively

Importing Model Elements

•

•

•

2.10 Working collaboratively

- 10/141 -

3. Planning the Host Integrator Project

3.1 Planning the Host Integrator Project
A model is the representation of a host application's connections, screens, navigation, and data flow
that you build with the Verastream Host Integrator Design Tool. Once you have modeled your host
application, you deploy the resulting model to a Host Integrator Server, where it can provide real-time
access to host data through web-enabled services.

Building a good model of a host application requires a basic understanding of the business problem
that will be solved using the Host Integrator model and associated components. Use the guidelines
below to prepare for Verastream host application modeling.

Gather the basic information about the host and the host application.

Know the host operating system and any relevant details about the host application software. The
more you know about your host application, the greater the likelihood that you'll have an
effective, robust model.

Determine the data you want to access in the host application.

If you're not familiar with the host application yourself, a host application programmer or an
experienced business user needs to identify logon procedures and the sequence of screens
typically used to reach the data you want to access. As you build the host application model, each
host screen used in the model is represented as an entity. An efficient host application model
contains only as many entities as are required to perform the necessary transactions between the
external application and the host application.

Take the time to create an easy-to-follow data map to simplify the process of building the model.
This exercise may reveal multiple screens and operations that display the same data. Whenever
possible, model the screen that shows the data in its updated form for the transaction in
question.

Identify the environment where the host data should be available.

Will the host data be presented on a web page for customers or users? Is the host data to be used
by another application? Know the requirements and the environment where the host data will be
used. If you are only planning to update the host application with a more modern web page look
and feel, you can build a simple model. However, if you plan to alter the work flow or interoperate
directly with other applications, your model will need to be more complex.

What is the Web presentation technology? Know the requirements and the environment where
the host data will be used. If you're not integrating the data with other applications, a simple
rejuvenation of the host application may be sufficient. Otherwise, you should plan on setting up

• •

• •

• •

• •

3. Planning the Host Integrator Project

- 11/141 -

tables and procedures so that an external application, such as a Web service, has access to the
host data. This decision has a direct impact on how your build your model.

Know the development requirements for the external application.

Host Integrator provides APIs for integrating host data through SQL, ASP, ASP.NET, JSP, Web
Services, COM, and .NET. For a quick implementation, many of these options can be generated
using Host Integrator's Web Builder.

You can use Host Integrator with Microsoft's Active Server Pages (ASP), ASP.NET, or a Java Server
Pages (JSP) environment. In this environment, you can use Host Integrator to give users access to
host data from a Web browser.

You can use Host Integrator to make host data available to another client/server application,
whether or not it is Web-based.

Host Integrator support for object frameworks on application servers include Web Services, the
Component Object Model (COM), and .NET. Application server deployments are especially well-
suited for situations in which high volume host systems are extended to the Web. Additional
business logic can be developed to add more functionality and capabilities to the system without
any work or development required in the host system environment.

Plan for error handling.

Error handling is a very important part of the model-planning process. Learn where and how the
model can fail or put the host application in an error condition. Then, build exception handling
into your model for these cases to reduce the chance that your model will fail after it is deployed.

Review the modeling tips in the online help.

The modeling tips cover basic model style guide recommendations, a comparison of table-based
vs. non-table-based models, basics on screen recognition and pattern usage, and host
synchronization.

More information

Using the Design Tool

Learning to use Host Integrator

The Modeling Process

• •

• •

• •

• •

• •

• •

•

•

•

3.1 Planning the Host Integrator Project

- 12/141 -

3.2 Host Integrator Components
Host Integrator includes a variety of development and runtime components to integrate host data into
Web applications or other client/server applications.

The Development Kit provides a full range of utilities with a limited license server, while the Server Kit
includes a full license server without the development tools.

3.2.1 Development Kit
The Host Integrator Development Kit provides developers with the tools to model and build
applications that integrate legacy application information. It includes the following components:

Design Tool

Web Builder

Connectors

Server (limited-license version)

Component Description Development
Kit

Server Kit

Design Tool Create a model of the host
application by navigating
through host screens

Yes No

Web Builder Generate web-based applications
from the model.

Yes No

Connectors Connect to the server to manage
host connections and sessions.

Yes Yes

Session Server Access data on a variety of host
systems.

Yes (limited) Yes

Web Server Run Java or HTML5 web
application projects.

Yes Yes (install
option)

Host Emulator Use to test an application without
a host connection.

Yes No

Administrative
Console

Use to view and configure server
and session information.

Yes Yes

•

•

•

•

3.2 Host Integrator Components

- 13/141 -

Administrative Console

Log Utilities

Host Emulator

Verastream Help

3.2.2 Server Kit
The Host Integrator Server Kit is a suite of applications that allow you to deploy applications created
with the Host Integrator Development Kit. It includes the following components:

Server (full-license version)

Administrative Console

Connectors

Log Utilities

Verastream Help

3.2.3 Adding, Removing, and Repairing Components
You can add components to or remove components from your Host Integrator installation whenever it
becomes necessary. You can also repair your existing installation using the same install program.

•

•

•

•

•

•

•

•

•

3.2.2 Server Kit

- 14/141 -

Navigate to <install_directory>/setup and run setup.exe . The install program will detect the existing
installation and display the Maintenance and Component Selection panel. By default the Maintenance
tab displays.

Repair - Reinstalls missing or corrupt files, registry keys, and shortcuts. Settings may be reset to their
default values.

Reinstall - Completely removes from the system and begins the installation process anew. The Install
Guide, in PDF format, is available from your installation directory.

Remove - Removes all Host Integrator files and directories as well as uninstalls all product
components.

You cannot continue with your installation maintenance selection (repair, reinstall, remove) if you click
Continue and navigate away from the Maintenance tab. Select the maintenance option and click
Continue while on the Maintenance tab to perform the desired action.

To view a list of currently installed components, open the Component Selection tab. This tab displays
the components that are currently installed. Select or clear components to create the desired
installation.

Click Continue and setup will perform the necessary actions to install or remove your selections.

3.2.4 Starting and Stopping Services
There are several Host Integrator services. Different services are installed depending on your platform,
type of product (Server or Developer Kit), and other options that you select during installation.

Host Integrator services include:

Session Servers

Runtime engine that loads deployed models; connects to host systems, and services request from
clients.

Log Manager

Captures runtime messages in log files; and handles SNMP and email notification.

Management Server

Supports the Administative Console, session server load distribution domains, authentication and
authorization security, and session pool scheduling.

Web Server

Runs Java and HTML5 Web projects generated by Web Builder.

Host Emulator

Simulates a host (3270 or 5250 only) for demonstration, training, or testing purposes.

1. 1.

2. 2.

3.

4. 4.

5. 5.

6. 6.

• •

• •

• •

• •

• •

3.2.4 Starting and Stopping Services

- 15/141 -

On Windows, with the Developer Kit installed, the services start automatically on system startup. When
you install the Server Kit, both the Host Emulator and Web Server are disabled at startup. For Linux or
zLinux see the install guide for instructions on how to configure the system to start services
automatically.

To start or stop services from the Administrative Console
The Session Server, Management Server, and Host Emulator services running on Windows or Linux
servers can be restarted or stopped using the Administrative Console.

Open the Administrative Console,from each of the server Explorer panes, select the server you want to
interact with, right-click and choose Restart or Shut Down.

To start or stop services from the command line
Commands or shell scripts can be run at a shell command prompt, called from other scripts, or run
from a shortcut that you create.

Windows

Navigate to <install_directory>/HostIntegrator or/bin/services directory. You can start, restart, or
stop all services by running the appropriate batch file or by interacting with a specific service. To
interact with a specific service, open the component directory, for example HostEmulator, and run
the batch file for the action you want to perform; Restart Host Emulator.bat, Start Host
Emulator.bat, or Stop Host Emulator.bat .

zLinux

Navigate to <install_directory>/opt/rocketsoftware/verastream/HostIntegrator/bin directory. You can
start, restart, or stop all services by running the appropriate script file or by interacitng with a
specific service. For example, to restart all services, run atstart -restart all or to restart just the
management server, run atstart -restart mgmtserver .

• •

• •

3.2.4 Starting and Stopping Services

- 16/141 -

More information

The Development Process

Planning the Project

3.3 Development Process
To build a Host Integrator application, follow these steps:

Plan your integration project

To create a good model of a host application you must have a basic understanding of the business
problem that you want the model to solve. There are guidelines available to help you plan your
project in Planning the Project.

Create and deploy the host application model

There are a few steps you must follow to create and deploy a model.

Navigate through the host application, identifying the screens and fields that lead to the data that you
want to integrate into the new Web or client/server application.

Expose the resulting components as database tables and procedures. A table is a database
abstraction with attributes or recordset fields structured in table columns. You can create a procedure
that defines how Host Integrator locates, retrieves, updates, inserts, or deletes the data when it fulfills
a request through SQL or through another API. If you want to add functionality beyond what is
provided in the Design Tool, you can add event handlers that extend or override default model
behavior.

•

•

1. 1.

2. 2.

•

•

3.3 Development Process

- 17/141 -

Test your model to confirm that it operates as you expect.

Deploy the model to a folder containing the model file and any supporting files on the Host Integrator
server. Web services are automatically provided by the session server as an embedded SOAP stack or
as a REST service after a model package is deployed using the Design Tool. The embedded Web
service supports all model procedures and features, including executeSQLStatement and
ProcessString event handlers. See About Verastream Web Services for detailed information on Host
Integrator Web services.

Build a new Web or client/server application

You can build a new application using these options:

Use Web Builder to quickly build and deploy a Web application. You can build a Web application for a
Java, .NET, or ASP interface, and then launch a standard editor for any of these interfaces to extend or
modify the Web application.

Use Web Builder to generate a component interface that provides access to the procedures and
screens in a host model. Component interfaces are available using Java Beans or .NET 2.0 class
libraries.

Use the IDE of your choice to consume Verastream-generated components. Mix and match
components or services to create composite applications. You can use the Host Integrator connectors
to develop a new client/server or Web application. Using these APIs, a developer can write a client/
server or Web application without extensive knowledge of how the host application works.

Deploy the application to the enterprise

In a production environment, the deployed Host Integrator servers provide dynamic load balancing
and failover in transaction-intensive environments. Host Integrator supports all mainframe-based
security packages and also has its own multi-level security, which can be tied to the security schema
of the selected deployment platform (Windows or Linux).

Using the Administrative Console

The rich Administrative Console user interface keeps mass management in mind and provides central
administration of the management server and Host Integrator servers. It is here you will be able to:

Maintain control over sessions and pools

Monitor logging of session information, activity, use and status

Configure external reporting

Configure SNMP and JMX support for third party consoles

Manage models and edit model properties

•

•

3. 3.

•

•

•

4. 4.

5. 5.

•

•

•

•

•

3.3 Development Process

- 18/141 -

3.4 Learn to Use Host Integrator
To get the most benefit from this tutorial, review the following topics before you begin:

Using the Design Tool

The Development Process

You will need to install the Developer Kit to run this tutorial.

3.4.1 Goal
The goal of this tutorial is to produce a Host Integrator application.

You will work with a simulation of a 3270 (CICSAccts) host application and use Verastream tools and
utilities to build a simple Host Integrator application. This is a demonstration application, consisting of
limited navigation and a database of generic customer data for eight fictitious customers. It is a useful
tool for learning to create a model.

This tutorial walks you through these steps:

Define the business need for the project

Develop the model requirements and map the data

Build, deploy, and test the model and web service

Creating a Web Builder project and generating a Web application

Deploy the project to the enterprise

Let's get started.

3.4.2 Defining the Business Need
Often the business needs of a project have already been defined before the development process ever
begins. Although you may not have been a part of the decision, understanding the business problem is
important to building a successful application.

In this CICSAccts project, the business goal is to make specific customer information available to users
over the Internet and to other business processes using Web services and other programmatic
component interfaces. You will access the data through the CICSAccts application on a 3270 host.

To accomplish the goal you will: automate the login to the host, retrieve the host data, and display the
data in a simple Web application.

•

•

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

3.4 Learn to Use Host Integrator

- 19/141 -

3.4.3 Developing Model Requirements and Mapping the Data
Now that you understand the goal and the deliverables of the project, you are ready to use the Host
Integrator Design Tool to build a model of the application. The model contains all the information
required for host application navigation, screen recognition, data storing, and data retrieval.

During this phase, either working on your own or with someone familiar with the host application, you
will navigate through the application and document each host screen's inputs, outputs, navigation path,
and other quirks. This will result in a model requirements document that identifies the intricacies of
each of the host screens that will be required to access the data.

The model requirements document contains two important features: the list of entities (unique host
application screens) that need to be modeled, and a chart mapping the project data to the screen where
the data will be retrieved.

In our application, in order to retrieve the necessary data, the main screen in the CICSAccts application
needs to be treated as two distinct entities: One for input of information to do the search (Main) and
one for output of the search (NameSearchResults). The output is a listing of information about each
customer; this is the data that you need from the application.

This is a map of the data our model needs for inputs and outputs:

Attribute Name Used for Screen Screen Field Name

LastName input Main SURNAME

FirstName input Main FIRST NAME

AcctNum input Main ACCOUNT

RequestType input Main REQUEST TYPE

LastName output NameSearchResults SURNAME

FirstName output NameSearchResults FIRST

MiddleInitial output NameSearchResults MI

Title output NameSearchResults TTL

Address1 output NameSearchResults ADDRESS

AcctNum output NameSearchResults ACCT

Reason output NameSearchResults ST

3.4.3 Developing Model Requirements and Mapping the Data

- 20/141 -

3.4.4 Building and Deploying a Simple Model
The completed model of the CICSAccts application lets you query the CICS database by a customer's
last name. To build this model, you will:

Connect to host using a login command list

Create entities from host screens

Create operations for host navigation

Create recordsets for scrolling data

Create tables and procedures for abstraction level queries

Create procedures to retrieve data

Test and deploy the model

Connect to Host Using a Login Command List

Open the Host Integrator Design Tool.

Click File > New to open the New Model dialog box.

Type MyModel in the Model Name field. This creates a connection profile to the CICS host. Accept the
default model location.

In the Settings box, click Browse and select IBM3270Model. This provides the appropriate default
settings for the session type (IBM 3270 Terminal), terminal ID (Model 2 24X80 Extended), and
transport type (Telnet). The CICS demonstration host uses port 1097.

Enter the following host connection information:

From the Settings menu, select Preferences. In the Preferences Setup dialog box, select the option
When model file opened connect to host. This configures the Host Integrator Design Tool to
connect to the host automatically when the model is opened.

Attribute Name Used for Screen Screen Field Name

ChargeLimit output NameSearchResults LIMIT

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4. 4.

Field Name Entry

Host name or IP address localhost

Port 1097

Device (Leave blank)

5. 5.

3.4.4 Building and Deploying a Simple Model

- 21/141 -

Click File > Save MyModel.modelx.

You have now finished configuring the Design Tool to connect to the demonstration 3270 application
(CICSAccts) running in the Host Emulator on the local machine over port 1097. Every time a new entity is
created (host screen is accessed), the Design Tool automatically notes all operations (navigation
through the host application). You will learn more about these terms and processes as you proceed
through this demonstration.

About the Design Tool
The Design Tool is divided vertically into two sections or panes:

Terminal Window -- The left pane displays the actual host application screen.

Entity Window -- The right pane contains the settings used to define the host screens that make
up the model.

CICS application navigation tips
Use these navigation tips to negotiate the CICSAccts application example:

The Page Down key on your keyboard is mapped to the host PA2 (page down) key.

The Scroll Lock key on your keyboard is mapped to the host CLR (clear) key.

Pressing Enter returns you to the main screen.

6.

•

• •

•

•

•

3.4.4 Building and Deploying a Simple Model

- 22/141 -

Creating a Login Command List
A login command list provides a quick and reliable login to a host. You can also use login commands to
bypass a host login screen.

To create a command list to log on to CICS:

If you're not already connected, click to connect to the model.

Click Model > Record > Start Recording.

Click in the Terminal Window and then press the Scroll Lock key (this is mapped to the host CLR by
default).

In the terminal window, type accts , and press Enter.

Click Model > Record > Stop Recording.

Select the Save as login command list option and click Save. The Command List Edit dialog box opens.
You will use this dialog box to edit the login command list.

To open the Command List Edit dialog box, click Model > Properties, and then .

Editing the Login Command List
The CICSAccts demonstration application is run from the Host Emulator; to synchronize the Host
Emulator login to the application, you need to add an additional wait command to the top of this
recorded command list.

To edit the login command list:

Select the first command in the Commands field, WaitForCursorAtLocation, 1, 1, "5" . If the
Row and Column values are not both 1, change the values to 1.

Click Insert , then point to Host Events, and click Wait.

With Wait "00:00:01" selected, click Move Up to move this command to the top of the command
list. Your commands should look like the command list in Figure 2.

Click OK to close both the Command List Edit and Model Properties dialog boxes.

1.

2.

3.

4.

5.

6.

Tip

1.

2.

3.

4. 4.

3.4.4 Building and Deploying a Simple Model

- 23/141 -

Configuring the Login Command List to Load Automatically
The Design Tool automatically executes this login command list whenever you connect to the model.

To configure the login command list to load on connection:

Click Settings > Preferences.

In the Preferences Setup dialog box, on the General tab, select Execute login commands, and click
OK.

Save your model.

To test the login command list:

On the tool bar, click to disconnect your current session.

Click to reconnect and run the login command list. Each time you open the model, the Design
Tool automatically connects and logs you onto the host and displays the Main screen of the host
application.

Create Entities From Host Screens
An entity is usually a single host application screen, such as the login screen or the main menu screen
of an application. A model is made up of entities (host screens) and the attributes, recordsets, and
operations associated with those screens.

1.

2.

3.

1.

2.

3.4.4 Building and Deploying a Simple Model

- 24/141 -

Up to this point, you have recorded all navigation through the host application in the login command
list. Since the end application does not access data from these initial screens, you do not have to
configure each screen in the login sequence as an entity. The first screen you need to define is the
Account File Menu screen.

To add a screen as an entity:

When the first screen, Account File: Menu, appears after connecting to the host, click New Entity
in the Entity Window. By default, the entity is named Entity_1 .

Change the entity name to Main .

Creating a Pattern for Entity Recognition
A pattern is a model element that is used in the screen signature to identify a particular host application
screen. Host Integrator uses patterns to distinguish individual entities. Select any static text on the
screen, such as field labels, or screen headers and footers, to be designated as a pattern. Each pattern
can include up to 259 characters.

To help ensure that each entity has a unique identifier, it is a good idea to configure at least two
patterns to define each entity, one at the top of the screen and one at the bottom.

To create patterns for the Main entity:

In the Terminal Window, use the mouse to select the text: ACCOUNT FILE: MENU

On the Pattern tab, click New Pattern .

By default, the pattern is named Pattern_1 . Accept this default name.

Click Apply.

The Design Tool has now recorded the position, properties, and signature parameters of the pattern.
You can access and edit these settings on the Pattern tab.

1.

2.

Tip

1. 1.

2. 2.

3.

4.

3.4.4 Building and Deploying a Simple Model

- 25/141 -

Typically, it is a good practice to define at least two patterns per entity, and on most host screens you
would select a second string of unique text to use as your second pattern. However, when you defined
the requirements for the model, you realized that for this application you must take a different
approach because the same host screen is used to both request and display customer information.

When you enter customer information on the screen (Figure 4), the data is returned in the blank area at
the bottom of the screen (Figure 5). Compare Figure 4 to Figure 5; all of the text on the top half of the
screen remains the same. It is difficult to assign a unique pattern on the first screen because all the
static text on the first screen also appears on the second screen.

3.4.4 Building and Deploying a Simple Model

- 26/141 -

Figure 4 -- Entity 2 \"main\"

Figure 5 -- Entity 2 \"NameSearchResults\"

Can you treat this as one entity? You could, but that would add complications when creating operations
and recordsets.

The simplest solution is to create two entities and use an exclude; Host Integrator "recognizes" the first
entity by the presence of specific text, and the second by the absence of that same text.

To use an exclude, select a pattern that exists only on the second screen, and then configure Design
Tool to recognize the first screen by the absence of that pattern. In other words, when the pattern is not
there, then by default, the first screen is being accessed.

To create a pattern using an exclude:

In the Terminal Window, click in the SURNAME input area, type W (uppercase W), and then Press Enter.
You are now on the second entity (the same screen as the first entity, but with data).

Use the mouse to select the entire account information heading:

1.

2. 2.

3.4.4 Building and Deploying a Simple Model

- 27/141 -

Figure 6 -- Select this text to create a second pattern

On the Pattern tab, click the New Pattern button. Accept the default pattern name, Pattern_2 .

At the bottom of the Pattern tab, select Screen properties not present as part of the Definition and
click Apply.

Click Yes to dismiss the warning message box.

When you use the Screen properties not present setting, Design Tool automatically initiates the creation
of a new entity. Before continuing, you must complete the steps to add this second entity and identify it
with patterns.

To add this screen (with data) as a new entity:

Click the New Entity button in the Entity Window.

Select the default entity name (Entity_2) and replace it with NameSearchResults .

To add patterns for the second entity, NameSearchResults:

In the Terminal Window, use the mouse to select the text: ACCOUNT FILE: MENU

Figure 7 - Select this text in the Terminal Window to create a pattern in the second entity

On the Pattern tab, click the New Pattern button. Accept the default name.

Use the mouse to select the entire account information heading:

Figure 8 - Select this text to create a second pattern in the second entity

This is the same text you used when you identified the Main entity; however, in that instance you
configured the Design Tool to make sure that the pattern was not present when identifying the Main
entity. In identifying the NameSearchResults entity, you are configuring the Design Tool to verify the
pattern is present.

On the Pattern tab, click the New Pattern button. Accept the default name and click Apply.

3. 3.

4.

5.

1.

2.

1. 1.

2. 2.

3. 3.

4. 4.

3.4.4 Building and Deploying a Simple Model

- 28/141 -

On the Confirm Operation dialog box, click Discard. Then click Yes to confirm the discard and close the
dialog box. (Design Tool automatically creates navigational operations; however, you need to first
identify attributes and fields.)

You have now created two entities, Main and NameSearchResults.

The next step is to identify the fields or attributes that you need on each entity. To return to the Main

entity, click Disconnect on the toolbar, and then Connect to reconnect to the host, run the
login script, and open the Main entity.

Configure Attributes for Data Entry and Retrieval
An attribute is a selected area on an entity that contains data that is accessible through the model. This
area might be a data entry field or a text field that changes depending on the choices you make on
prior screens. You use attributes to get and set data on entities. Create attributes only for those host
fields that need to be accessed; give attributes meaningful names that identify their purpose.

To create attributes:

On the Main entity, select the SURNAME field input area.(On block mode applications such as this
3270 application, you can double-click the field to select it.)

Figure 9 -- The defined area of Attribute_1

On the Attribute tab, click New Attribute to add this as Attribute_1 .

Rename Attribute_1 to LastName and if necessary:

Adjust the start position to row 5, column 17.

Adjust the end position to height 1, width 12.

Repeat this process to include these attributes:

5.

1. 1.

2. 2.

3. 3.

•

•

4. 4.

Attribute Attribute Name Start (row,column) End (height, width)

SURNAME LastName 5,17 1,12

FIRST NAME FirstName 5,44 1,7

REQUEST TYPE RequestType 9,22 1,1

3.4.4 Building and Deploying a Simple Model

- 29/141 -

Click Apply.

Next, add these same attributes to the NameSearchResults entity:

To add the attributes:

To navigate to the NameSearchResults entity, on the Main entity, click the SURNAME input field and
type W (uppercase). Then press Enter.

A Confirm Operation dialog box displays listing the commands needed to navigate to the
NameSearchResults entity.

Click Approve.

Repeat the steps to add the same four attributes (LastName, FirstName, RequestType, AcctNum) on
the NameSearchResults entity.

Click Apply and save your model.

Create Operations for Host Navigation
Operations are typically used to navigate between entities, so they have an origin entity and a
destination entity. You've already configured the Design Tool to auto-generate operations as you move
through the host application. When you navigated from the Main entity to NameSearchResults, you
approved the operation [ToNameSearchResults]{.uielements} .

So far, you have only navigated forward through the application. To move backwards by selecting the
prior entity you need to create a return operation. This ensures entities can navigate both forwards and
backwards in a model.

Open the drop-down list of available entities. The icon preceding the Main entity selection
indicates the home entity. A red house indicates that you have not defined operations to access this
entity from your current location.

To create a return operation:

Click in the Terminal Window and press Enter.

In the Confirm Operation dialog box, review the new operation, ToMain, and then click Approve.

To review the navigation operations, open the drop-down list in the Entity box. Both entity icons are now
available. Select each entity and view the entity's Operation tab.

Attribute Attribute Name Start (row,column) End (height, width)

ACCOUNT AcctNum 9,35 1,5

5. 5.

1. 1.

2. 2.

3.

4.

1.

2.

3.4.4 Building and Deploying a Simple Model

- 30/141 -

If you click random keys while navigating, each key press is recorded in the operation. If you see
unnecessary operations, use the Delete button to remove them from your operation command list.

Create Recordsets for Scrolling Data
Recordsets handle scrolling or tabular data. You create recordsets to manage dynamically changing
data that spans several host screens. In the Design Tool, you create a recordset by defining the:

Position and layout of the recordset on the screen

Methods for scrolling through the recordset data

Fields of data in the recordset

Defining the position and layout of the recordset
You are going to create a recordset from the data displayed in the list of records on the
NameSearchResults entity.

Select the NameSearchResults entity and click the Recordset tab.

With the mouse, select the full scrollable area on the screen. Do not include the column titles when
you select the scrollable region.

Figure 10 -- The scrolling region of this screen is selected. When selected, the lines around this area of
your screen are green

Click New Recordset . The Position tab should show the Top of the selection at Row 17, Column
2, and the Bottom at Fixed row, Row 22.

By default, the recordset is named Recordset_1 . Change the name to AccountList in the Name
box and then click Apply.

Defining the scrolling operation through the recordset data
You view the recordset data by using terminal keys to page down and scroll through the data.
Navigational operations are defined within each recordset.

Tip

•

•

•

1.

2. 2.

3. 3.

4.

3.4.4 Building and Deploying a Simple Model

- 31/141 -

Adding a page-down operation
You'll need to define a page-down operation for the AccountList recordset in the NameSearchResults
entity.

To define a page-down operation for the AccountList recordset:

Select the Operation tab of the NameSearchResults entity.

To record your operation, from the Model menu, choose Record > Start Recording.

Click in the Terminal Window and press the Page Down key, which is mapped to host key PA2.

Click Model > Record > Stop Recording.

In the Stop Recording dialog box, rename the operation from ToNameSearchResults to PageDown
and click Save.

In Step 3, several additional commands may have been recorded. This operation only requires these
two commands:

If other commands are listed, delete them.

Click OK to save and close the Operation Edit dialog box.

Using the page-down operation
After you create the recordset operation, you must tell Host Integrator when to use it. The Recordset
Operations dialog box contains a predefined set of procedures that the Design Tool uses for specific
operations. A page-down procedure displays an entire page of new data. You need to associate a
specific operation with this page-down procedure.

To associate a specific operation with a procedure

From the Recordset tab, click the Operations button at the bottom left of the tab.

On the Recordset Operations dialog box, open the PageDown drop-down list.

Select your PageDown operation from the list of options.

Click Close, and then click Apply.

Terminating the page-down operation
Next, you need to communicate to Host Integrator when to stop scrolling through the
NameSearchResults data. To do this, you first create a pattern so Host Integrator recognizes that the
end of the data has been reached. You can often use a comment such as END OF DATA for this.

1.

2.

3.

4.

5.

6. 6.

CheckOperationConditions
TransmitTerminalKey rcIBMPA2Key

7. 7.

1.

2.

3.

4.

3.4.4 Building and Deploying a Simple Model

- 32/141 -

Unfortunately, the CICS application does not display an end-of-data comment. Instead, you can
configure Host Integrator to recognize the absence of the text, "THERE ARE MORE MATCHING NAMES,"
as an indication that it has reached the end.

To create the pattern

On the NameSearchResults entity, open the Pattern tab.

Click in the Terminal Window and press Enter.

In the Surname field, type W (uppercase W), and press Enter.

Select the text: THERE ARE MORE MATCHING NAMES and then click the New Pattern button.

Rename the pattern to MoreNames .

Clear the Use in entity signature check box.

Select Screen properties not present.

Click Apply.

Now that you have created the pattern, you must tell Host Integrator to use the MoreNames pattern to
signal the end of the PageDown operation.

To signal the end of the PageDown operation

Open the Recordset tab and click the Termination button at the bottom of the tab.

Open the Scroll Down tab, clear the Scroll operation results in same recordset data check box in the
Scroll termination criteria pane.

Select Screen contains pattern, and then from the drop-down list, select the MoreNames pattern.

To configure the Exclude records, on the last screen option select Read until __ blank records are
found. Then accept the default setting of 1 .

Click Close, and then Apply.

You can now successfully traverse and terminate the AccountList recordset.

Creating Recordset Fields
A field is a single piece of data in a recordset. Defining a field on a recordset is similar to defining an
attribute on an entity. For the CICSAccts application, you need the customer's first and last name,
middle initial, title, and address, as well as the reason and charge limit on their account.

To add fields to the AccountList recordset

From the Recordset tab, open the Fields tab.

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

1. 1.

3.4.4 Building and Deploying a Simple Model

- 33/141 -

In the Terminal Window, select account number 20000 on the first row of data (the first row of data
is used by default to define what data is contained in this column):

Figure 11 -- Defining the AcctNum field

On the Fields tab, click New Field .

A new field called Rfield_1 is created.

Rename the new field to AcctNum .

Select the entire surname field on the first row of the recordset. Then click the New Field button and
rename it to LastName .

Figure 12 -- Defining the Surname field

Use the data below to add and define the remaining fields.

Click Apply and save your model.

Create Tables and Procedures for Abstraction Level Queries
You have now created a model of your host application that defines host screens as entities, screen data
as attributes, and tabular data as recordset fields. You have also created operations that describe how
to navigate from one entity to another. At this stage of the process, the model fully describes the host
application layout.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Select Default Name Rename to Start End

WAGY RField_2 LastName 9 20

MARK RField_3 FirstName 23 29

T RField_4 MiddleInitial 32 32

MR RField_5 Title 35 38

116 BURNSIDE ST RField_6 Address1 67 67

N RField_7 Reason 67 67

1000.00 RField_8 ChargeLimit 72 79

7. 7.

3.4.4 Building and Deploying a Simple Model

- 34/141 -

Tables and procedures are functionally interlocked; tables are populated with data by a procedure, and
you can access the unstructured data in a way that resembles a structured database table.

Because Host Integrator tables do not contain data, but rather "organize" host data into a database-like
view, the only way to access abstracted table data is through a procedure. Procedures define how Host
Integrator locates, retrieves, updates, inserts, or deletes data when it fulfills a request from the client
application.

The Web application developer needs to know only which procedure to run, along with the appropriate
inputs and outputs; there's no need to know how the host application works. For more information, see
Tables Overview.

To create a table

From the Model menu, click Tables.

On the Introduction dialog box, select Don't show me this dialog again and click Finish. You will not
be using the Table Wizard to create this table.

On the Tables dialog box, click New. On the Create a New Table or Procedure dialog box, select
Table and click OK.

In the Name field, change Table_1 to Accounts .

In the Description field, type Table of account information .

Click Insert Column six times, to create Column 1 through Column 6. Columns identify the
attributes and recordset fields that make up the table.

Using the following chart, rename Column_1 through Column_6. For example, rename Column_1 to
LastName and so forth. You do not need to enter data in any of the other fields.

Click Apply to save the Accounts table.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

Default Name Rename to

Column_1 LastName

Column_2 FirstName

Column_3 MiddleInitial

Column_4 Title

Column_5 Address1

Column_6 AcctNum

8. 8.

3.4.4 Building and Deploying a Simple Model

- 35/141 -

Create Procedures to Retrieve Data
Procedures retrieve data and populate tables.

To create a procedure that retrieves the account information

In the Tables dialog box, click New and select Procedure (using the Procedure Wizard). Then click OK.

In the Name field of the Procedure Wizard, type SearchByName .

In the Description field, type Search by name . Then verify that the Procedure type option is Select
and click Next.

Identify the procedure parameter needed to manipulate and return host data and specify which
attribute or field to use to filter the records:

a. In the Filter Parameters dialog box, go to the LastName_ row and click in the empty Write
parameter to cell.

b. Open the drop-down list and select Main.LastName to write the filter parameter to the last name
attribute on the Main entity.

c. In the Required column, confirm that Required for LastName is selected. You need to enter a last
name to proceed.

d. Click Next.

Choose the parameters to be returned as output. The data to be returned is in the AccountList
recordset on the NameSearchResults entity.

In the Output Parameters dialog box, click in each Read parameter from cell and select the following
data sources from the drop-down menu:

This maps the procedure fields with the data in the AccountList recordset on the
NameSearchResults entity.

Click Next.

View the Summary, and click Finish to return to the Tables dialog box.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Parameter Data Source

LastName NameSearchResults.AccountList.LastName

MiddleInitial NameSearchResults.AccountList.MiddleInitial

Address1 NameSearchResults.AccountList.Address1

AcctNum NameSearchResults.AccountList.AcctNum

6. 6.

7. 7.

3.4.4 Building and Deploying a Simple Model

- 36/141 -

Review the information in the Tables dialog box for the SearchByName procedure. You can expand
Accounts to view the procedure.

Verify that the Home entity is Main. This table begins and ends at the Home entity. Each procedure
must have a home entity to ensure that queries and procedures begin from a known point in the host
application.

Click OK and save your model.

Figure 13--SearchByName procedure details

Test and Deploy the Model
There are multiple utilities you can use to test your model before you deploy it. In this tutorial we are
going to use two debug utilities, Procedure Test and SQL Test.

Because the model you created is a simple, two-entity model, comparing the entities and identifying the
traversal path is easy. But consider a model that contains hundreds of entities with a multitude of
attributes and complicated navigation, and you can understand how all of these testing utilities become
important debugging tools:

Validator checks a model's completeness.

Signature Analyzer ensures each screen is uniquely identified.

Navigator reviews the model's traversal path.

8.

9.

10. 10.

•

•

•

3.4.4 Building and Deploying a Simple Model

- 37/141 -

Procedure Test confirms procedures run correctly.

Model Debug Messages diagnoses problems such as synchronization with the host by showing the
model's behavior while interacting with a terminal datastream.

SQL Test verifies that SQL results are correct.

To run a procedure test

From the Debug menu, click Procedure Test. Since you have only one table and one procedure, they
are selected by default.

In the Procedure Filters box, type W (uppercase W) in the Value field (associated with the LastName
filter.)

Click Execute. Seven entries should be returned and displayed in the Procedure Outputs box.

Click Clear and enter K (uppercase K) to test your procedure again.

Click Execute. You should see one entry under Procedure outputs.

Click Close.

To run an SQL test

From the Debug menu, click SQL Test.

In the SQL statement box type the following SQL command:

SELECT * FROM accounts WHERE lastname LIKE W

Click Resolve to resolve the SQL statement to a procedure.

Click Execute.

Seven records are returned and displayed in the Output recordset box.

Click Close and save the model.

The Host Integrator supports a subset of the SQL 92 standard for SELECT, UPDATE, INSERT, and DELETE
statements. Some of these commands are used in a slightly different manner. For more details, see
SQLSyntax.

Testing Web services
In Host Integrator, Web services are automatically provided by the session server as an embedded SOAP
stack after a model package is deployed using the Design Tool. As the provider of a Web service, you
publish the WSDL document to give developers access to your Web service. With the WSDL-generation
URL, developers can use utilities to generate specific files to locate and consume the Web service.

This location lists the available Web services WSDL documents:

•

•

•

1.

2.

3.

4.

5.

6.

1.

2. 2.

3. 3.

4. 4.

5. 5.

3.4.4 Building and Deploying a Simple Model

- 38/141 -

http://<session server>:9680/vhi-ws

Optionally, you can access the WSDL for a specific model by using the model name. For example:

http://<session server>:9680/vhi-ws/model/<model name>?wsdl .

Testing your service is an important step before you run your process in a production environment.
Testing is an easy two-step procedure:

After you deploy the model to the Host Integrator Server, a message box informs you that the model is
successfully deployed.

Figure 14 -- Deployment successful message

Click Test to launch the Web Services Explorer, a browser-based test tool, where you can test the Web
service.

In the Actions view of Web Services Explorer, enter the parameters of the WSDL in order to test the
service and click Go.

To test Web services that are protected by WS-Security, Basic Authentication, or HTTPS, use a third-
party development environment, such as Microsoft Visual Studio.

Although the way that Web services are implemented in Host Integrator is beyond the scope of this
tutorial, you can read more about them in About Verastream Web Services.

Extending Your Model with Event Handlers
Event handling extends the capabilities of Host Integrator models by interrupting the interpretation of a
model and turning control over to user-supplied procedural code. For example, you can use event
handlers to:

Convert cryptic host application codes to user-friendly descriptions

Convert formats for currencies or dates

Secure access to sensitive data

Create other functions that might otherwise require custom client-side programming

You can also use event handlers to increase Host Integrator error-handling capabilities. For example,
you can add an event handler at the point an error occurs and then implement event-handler code that
intercepts the error, takes control, and corrects the error.

1. 1.

2. 2.

Tip

•

•

•

•

3.4.4 Building and Deploying a Simple Model

- 39/141 -

Although event handlers are beyond the scope of this tutorial, you can read more about this powerful
feature in About Event Handlers.

About Deploying Host Application Models
To move into production testing, you need to deploy your model to the Host Integrator server that
handles the communication between your custom application and the model, and between the model
and the host application. When deploying models, use either:

Design Tool Deployment - If you are deploying one model to one server (local or remote), with one
model configuration, use the deployment options on the Design Tool's File menu.

Command Line or Script Deployment - If you are deploying a model to one or more production
servers, use deployment commands from a command line or in a script. This enables you to
automate the model's deployment to each Host Integrator server.

For more information about using these different deployment methods, see Deploying Models.

Deploying MyModel.modelx
You are using your workstation as the development, testing, and production environments; therefore,
you will deploy your model to the local session server, localhost:

Open your model in the Design Tool.

To deploy your model, click File > Deploy to Local Server.

When the dialog box informs you that you have successfully deployed your model, click OK.

Close the Design Tool.

3.4.5 Creating a Web Builder Project and Generating a Web
application

After you have completed, tested, and deployed the model, you are ready to create a project from the
Host Integrator model. For the CICSAccts example, you will use Web Builder to generate Web pages
from the model.

Web Builder generates projects ranging from simple screen-based rejuvenation to full procedure-based
integration. A rejuvenation Web application uses the model's entities, attributes, and recordsets as the
basis for creating the Web front end. An integration project uses procedures to create a Web application
or component interfaces, JavaBeans, and .NET class libraries.

•

•

1.

2.

3.

4.

3.4.5 Creating a Web Builder Project and Generating a Web application

- 40/141 -

You can use Web Builder to create an HTML 5 Web application that can be used either out of the box or
customized by your Web application developer. Screen-based rejuvenation may be adequate for some
projects, but, in this tutorial, you will use the model's procedures to integrate the CICSAccts application
into a more sophisticated application.

The steps you follow to generate a project are the same on either a .NET or Java platform. Select the
type of project you want to build based on your platform and whether you want to generate a Web
application or component interface.

To build an HTML 5 Web application For CICSAccts

Open the Design tool and then choose File > Web Builder.

In Web Builder, click New to create a new project.

Select HTML 5 Web Application as the type of project to create.

Select MyModel as the Host Integrator model name.

Enter MyModel_Application as the project name.

Click Properties and then Build.

When the Build Project dialog box displays a BUILD COMPLETED message, your Web application
automatically runs. (You can run the project manually in the Web Builder by selecting your project
and clicking Run.)

When the Web application displays, click to open the available Procedures.

Click Search by name, enter a W in the LastName text box, and then click Execute.

Close the application and Web Builder.

Deploying the Project to the Enterprise
In a work environment, after you have developed the new Web or client/server application and the
application is tested, you can deploy it to the enterprise using the customer's preferred hardware
platform and network configuration.

For specific details on deploying a project, review:

Deploying Models

Deploying Web Services

Note

1.

2.

3.

4.

5.

6. 6.

7. 7.

8. 8.

•

•

3.4.5 Creating a Web Builder Project and Generating a Web application

- 41/141 -

3.4.6 Congratulations!
Using Verastream Host Integrator, you have created an easy-to-use Web application that accesses the
CICSAccts host application. You have:

Defined the business needs for the project.

You need a clear understanding of the business problem to be solved by your solution.

Developed the model requirements and mapped the data.

In the "real" world, you would work with system administrators to understand the user's
computing environment, programmers to learn what programming languages are preferred, and
host application users to understand how the host application functions. This would lead to
setting the model requirements and mapping the host application data. During this exercise, you
were given the model requirements and mapping information.

Built and deployed the model.

Using the Design Tool, you created a model of the host application, which was automatically
deployed to your local Host Integrator Server along with the automatically generated Web service.
You have:

Created patterns to uniquely identify each entity

Identified operations to navigate through the host application

Configured attributes for data entry and retrieval

Used recordsets to handle scrolling data

Created tables of host data

Developed procedures to query and retrieve data from those tables

Created a Web project using Web Builder.

You generated a Web application to test the procedures in your model, and delivered this Web
application as a simple front-end to the host application. You also have access to a Web service to
deliver to Web programmers for a more complex application that integrates host data through
the model.

Deployed the project to the enterprise.

Because you did not move the CICSAccts application into production, you didn't have to perform
this step.

Although your project will be more complex than this straightforward example, the steps you perform
and the utilities you use are the same each time you create, deploy, and implement a Verastream Host
Integrator model.

• •

• •

• •

•

•

•

•

•

•

• •

• •

3.4.6 Congratulations!

- 42/141 -

4. Using the Design Tool

4.1 The Modeling Process: Getting Started
To begin the modeling process:

Open the Design Tool.

On the File menu, click New to specify all the necessary settings in the New Model dialog box. When you
have finished supplying the necessary settings, provide a model name, and click OK.

You should now be connected to your specified host.

Now, you're ready to add an entity to your model.

4.1.1 Creating a Model
With the Design Tool, you create a model of the host application. The model consists of a main model
file and several supporting files that are located in the
<documents>\RocketSoftware\Verastream\HostIntegrator\models\<your model folder> . The supporting files
saved in your models directory vary depending on whether you are saving your model has a .model file
or as a .modelx file.

For more information:

Adding entities

Adding patterns

Adding attributes

Adding recordsets

Adding operations

Working collaboratively

Creating tables

Creating procedures

Using event handlers

Deploying models

You can use Web Builder to quickly and easily generate a web application or component interface such
as a web service or JavaBeans, based on the table of a host application model, or based on a host
application screen layout.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

•

4. Using the Design Tool

- 43/141 -

More information

Learning to Use Host Integrator

Host Integrator development process

4.1.2 Configuring a Model
The Design Tool provides several ways to configure unique properties and settings that enhance the
capabilities of the host application model. You can use the pre-configured settings files provided with
Host Integrator to start with the defaults appropriate for the terminal session you are modeling.
Settings include:

Variables - which allow attributes to be accessible from all parts of the Host Integrator

Model preferences - to customize default settings for the Design Tool

Model properties - to configure settings for the current model

Advanced entity properties - to configure settings for the current entity

Character mode - to configure settings for character mode terminal types (for example, VT)

Events- to configure synchronization for character mode terminal types

Command lists - to create a login, a logout, or a move cursor command list

Descriptions - to add descriptions in exported documentation created for the model.

More information

Model examples

4.2 Work Collaboratively
When you are building your host application project files it is often important for multiple people to
contribute to a project. Configuration management software, such as Git, provides your team with the
ability to manage and merge your project files efficiently. Because Host Integrator saves your project
files in an XML format, making them accessible to multiple developers, it is easy to work collaboratively.

Each host application project contains a number of files that you need to keep together in order to
ensure the project's uniqueness. Files are generated and saved in a directory that uses the same name
as the model you are using. The main model file, .modelx, uses that same name. It is important to keep
all the project files together and preserve their folder structure.

•

•

•

•

•

•

•

•

•

•

•

4.1.2 Configuring a Model

- 44/141 -

The <Model name> directory, which, by default, is created in my
documents\RocketSoftware\Verastream\HostIntegrator\model. Each Model name directory contains
the following files and directories:

The <model name> .modelx and modelx_1.xsd files.

The <entity name> .entityx and entityx_1.xsd files, in the entities subfolder.

The <table name> .tablex and the tablex_1.xsd files, in the tables subfolder.

The Scripts directory.

In particular, build.xml, the \src subfolder, and the \lib subfolder are required for event handler
maintenance.

In previous versions of Host Integrator, project files were saved with a .model extension. By default your
project is saved using its existing extension. Using the Save As option you can choose which format to
use. If you choose to save your file as a .model file, the directory contains these files:

The <model name> .model file.

The .snapshot file.

The Scripts directory.

In particular, build.xml, the \src subfolder, and the \lib subfolder are required for event handler
maintenance.

4.2.1 Using source control to manage and merge changes
Using the multiple plain text files generated in the Design Tool and a tool, such as Git, different
developers can work on the different files needed to build your host application project.

4.2.2 Things to remember

It is always better to make changes to the model using the Design Tool. In the Design Tool all
objects are available to copy from the user interface and every change is validated to make sure that
the model stays consistent.

Because the objects are available in XML format, you can open the modelx, entityx and tablex files in
an editor. Make sure that the editor you choose is capable of using the associated .xsd files. The .xsd
file checks the syntax and possible element values, but it is up to the developer to check the valid
syntax before attempting to run the project.

If your projects are referencing the same mainframe application, you can copy and rename the
entire .entityx or .tablex file into the destination model. You can copy entityx or tablex files from one

•

•

•

•

•

•

•

•

•

•

4.2.1 Using source control to manage and merge changes

- 45/141 -

model directory into another model directory. If the name in the destination model already exists,
you can simply give the new entityx or tablex files a new name. The new names will be available as
entities or tables in the Design Tool.

One advantage of an editor is the ability to globally copy and rename an object. You can copy
information within the same modelx file to create a number of variables that use the same
properties or within a file (modelx, entityx, or tablex) of one project, you can copy a complete
definition of an object, such as a variable, or copy a part of an object such as a pattern or a
recordset, belonging to an entity, or copy one or more columns that are part of a table.

For example, it is easy to copy the information contained within the variable tags, and then add
this variable to another project by pasting it after an existing variable in your XML file. You must
rename the variable to an unique value:

4.2.3 Importing model elements
With this option, developers can work separately on different sections of the same model, import
sections into the destination model, and reuse model elements as often as needed. You can import
elements from older formatted models into the current format and vice versa. You are not restricted by
the different versions of existing project files. There is complete documentation on this option
available. See Importing Model Elements.

• •

<Variable>
<Name>newUserID</Name>
<InitOption>VarInitUninitialized</InitOption>
<VarKind>VarKindSetting</VarKind>
<Attributes>

<VarAttrsRead/>
<VarAttrsWrite/>

</Attributes>
<Setting>HostUserName>/Setting>
</Variable>

4.2.3 Importing model elements

- 46/141 -

4.2.4 Optional Files
The Recordings directory, which is where the Host Emulator trace files are stored is optional. If you do
not intend to load and run a model recording in the Host Emulator, this directory is not needed.

If you want to save the settings for this model so that it will be the basis for creating other models,
select Save Settings As. The .dtool file you create can include Design Tool-specific configuration
information such as window size, colors, keymapping, and preferences, as well as information about
the host application and connection settings.

More information

Validating host application models

Troubleshooting tips and techniques

4.3 Setting Up a Connection

4.3.1 Design Tool Connection Settings

Entity Window Options

Terminal Window Menus

Entity Window Options
The Entity window contains all of the settings used to define the host screens that make up the model.
The Entity box contains all of the currently defined entity names with visual indicators to indicate
whether each entity listed is "reachable" from the current location via dynamic traversal or navigation.

When you are in offline mode, all screens are considered reachable and display a green icon since the
screen shots are loaded from a .snapshot file which has also recorded the navigation of the model. Next
to the Entity box, there are three buttons that allow a user to add a new entity, delete the current one,
or view the Advanced Entity Properties dialog box.

There are five tabs available from the Entity panel:

Pattern tab - contains all of the settings used to define patterns on a selected entity.

Attribute tab — contains all of the settings used to define attributes on a selected entity.

Operation tab - use this tab to edit or define operations on a selected entity.

Note

•

•

•

•

•

•

•

4.2.4 Optional Files

- 47/141 -

Recordset tab - contains all of the settings used to define recordsets on a selected entity.

Cursor tab - contains cursor movement settings to be used with character-mode hosts. (If you are
not working with a character-mode host, Cursor tab controls are unavailable.)

See Entity Settings for detailed information.

Terminal Window Menus
The Terminal window contains all of the menu items that can be used to configure host screens that
make up the model.

The following menus are available on the Terminal window:

File

Edit

Connection

Settings

Events

Model

Debug

Window

Help

See Terminal Settings for detailed information.

4.3.2 Entity Settings
The Entity window contains all of the settings used to define the host screens that make up the model.
The Entity box contains all of the currently defined entity names with visual indicators to indicate
whether each entity listed is "reachable" from the current location via dynamic traversal or navigation.

When you are in offline mode, all screens are considered reachable and display a green icon since the
screen shots are loaded from a .snapshot file which has also recorded the navigation of the model. Next
to the Entity box, there are three buttons that allow a user to add a new entity, delete the current one,
or view the Advanced Entity Properties dialog box.

There are five tabs available from the Entity panel:

Pattern

Attribute

•

•

•

•

•

•

•

•

•

•

•

•

•

4.3.2 Entity Settings

- 48/141 -

Operation

Recordset

Cursor

See Adding Entities to a Model for information on how to add and define your entity.

4.3.3 Using SSH: Overview
You can configure SSH connections when you need secure, encrypted communications between a
trusted host and your PC over an insecure network. SSH connections ensure that both the client user
and the host computer are authenticated; and that all data is encrypted. Passwords are never sent over
the network in a clear text format as they are when you use other protocols, such as Telnet.

Data Encryption Standards

Data Integrity

Digital Signatures

How does SSH Work?

SSH Authentication Options

Using Model Variables for SSH Authentication

Public Key Authentication

Enter Username and Password

Data Encryption Standards
Encryption protects the confidentiality of data in transit. This protection is accomplished by encrypting
the data before it is sent using a secret key and cipher. The received data must be decrypted using the
same key and cipher. The cipher used for a given session is the cipher highest in the client's order of
preference that is also supported by the server. You can use the cipher list on the Advanced VT SSH
dialog box to specify which ciphers the SSH connection should use.

Verastream Host Integrator supports the following data encryption standards:

AES (also known as Rijndael) (128-, 192-,or 256-bit) CBC mode and CTR mode

TripleDES (168-bit) CBC mode

Blowfish CBC

Cast 128

arcfour 128

arcfour

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.3.3 Using SSH: Overview

- 49/141 -

Data Integrity
Data integrity ensures that data is not altered in transit. SSH connections use MACs (message
authentication codes) to ensure data integrity. The client and server independently compute a hash for
each packet of transferred data. If the message has changed in transit, the hash values are different
and the packet is rejected. The MAC used for a given session is the MAC highest in the client's order of
preference that is also supported by the server.

Verastream Host Integrator supports the following MAC standards:

SHA256

SHA1

SHA512

MD5

RIPEMD160

RIPEMD160 openssh.com

SHA1-96

MD5-96

If your SSH server on the host supports it, you always have the option of selecting None when choosing
a MAC or data encryption standard.

The values for both the MAC and data encryption standards that you can select are dependent on
whether the Only show FIPS validated values is enabled. This option filters the values available.

Digital Signatures
Digital signatures (user key and host key algorithms) are used for public key authentication. The
authenticating party uses the digital signature to confirm that the party being authenticated holds the
correct private key. The SSH client uses a digital signature to authenticate the host. The SSH server uses
a digital signature to authenticate the client when public key authentication is configured.

Verastream Host Integrator supports the following digital signature algorithms:

ECDSA

RSA

DSS

EdDSA

•

•

•

•

•

•

•

•

Note

•

•

•

•

4.3.3 Using SSH: Overview

- 50/141 -

The known_hosts file
Every time an SSH client connects to a host, it stores a host key for that host. These stored host keys are
referred to as known host keys or just known hosts. In OpenSSH, these known hosts are stored in /etc/
ssh/known_hosts and in .ssh/known_hosts in each user's home directory. VHI uses the known_hosts file to
verify the identity of the server the model is going to connect to.

You can add the remote host's public key to the user's known_hosts file using either SSH or VHI.

By default, VHI uses the known_hosts file, located in directory ~/.ssh . You can specify a different file by
using predefined model variable KnownHosts . See Using Model Variables for SSH Authentication.

How does SSH work?
These are the basic steps involved in creating a SSH channel to transmit data securely. It is assumed
that the SSH Server is trusted and present in the known_hosts file.

Establish a secure connection

The client and server negotiate to establish a shared key and cipher to use for session encryption,
and a hash to use for data integrity checking.

Authenticate the server

Server authentication enables the client to confirm the identity of the server. The server has only one
chance to authenticate to the client during the authentication process. If this authentication fails, the
connection fails.

Authenticate the client

1. 1.

2. 2.

3. 3.

4.3.3 Using SSH: Overview

- 51/141 -

Client authentication enables the server to confirm the identity of the client user. By default, the client
is allowed multiple authentication attempts. The server and client negotiate to agree on one or more
authentication methods.

Send data through encryption session

Once the encrypted session is established, all data exchanged between the SSH server and client is
encrypted.

A channel is created and a terminal emulation using the terminal type specified in the configuration
dialog box is started

Users now have secure remote access to the server and can execute commands through the secure
channel.

More information

Configuring a VT session

Using Model Variables for SSH Authentication

Advanced VT SSH Options

SSH Authentication Options
You can enable authentication in two ways; interactively using the Design Tool or using model variables
in the Session Server and Design Tool.

To authenticate using model variables, see Using Model Variables for SSH Authentication. This is the
preferred option.

If you have not configured authentication using model variables in the Design Tool, you are prompted
to specify the authentication values:

Password

Specify the login username and password for that user on the SSH server host. The password is
sent to the host through the encrypted channel.

Public key and Private key

4. 4.

5. 5.

•

•

•

• •

• •

4.3.3 Using SSH: Overview

- 52/141 -

Specify the username, passphrase, and location of the public and private key files.

Relies upon public/private key pairs. Public keys and private keys are pairs of cryptographic keys
that are used to encrypt or decrypt data. Data encrypted with the public key can only be
decrypted with the private key; and data encrypted with the private key can only be decrypted
with the public key.

To configure public key authentication, each client user needs to create a key pair and upload the public
key to the server. If the key is protected by a passphrase, the client user is prompted to enter that
passphrase to complete the connection using public key authentication. Public keys are not sensitive
information and may be known to anybody, whereas the private key is protected very carefully by a
strong passphrase.

If you are using utility ssh-keygen to create the private and public key for SSH, be aware that the
newer ssh-keygen versions default to an OpenSSH format to generate private keys. This is not
supported by VHI. The public/private key pair must be in PEM format. Verify that the header of the
private key contains the text, RSA PRIVATE KEY. You can convert keys with OpenSSH private key
format using ssh-keygen to the old PEM format. Use the command ssh-keygen -m PEM -t rsa to
generate the files id_rsa and id_rsa_pub in the correct format.

SSH Agent

Specify the username.

SSH agent is a program to hold private keys used for public key authentication (ECDSA, RSA, DSA).
Host Integrator connects to the agent for authentication.

Caution

• •

4.3.3 Using SSH: Overview

- 53/141 -

The SSH agent:

Stores keys securely in encrypted form

Enables you to only specify a username when connecting using SSH. Host Integrator connects to the
SSH agent, and the agent takes care of the needed authentication. You do not have to specify a
password, key, or passphrase.

If you plan to authenticate using public keys, before you configure Host Integrator:

Verify that the SSH agent you are using is available and configured on either your Windows or Linux
system

Start the SSH agent and specify the location of the private key file. When the keys require a passphrase
that should be entered as well. The agent is now running as a daemon at the background.

The key data must be in OpenSSH format. Remove any new lines, comments, or other data.
Whatever tool you use to create the private key, must be used to export the key to OpenSSH format.
If the public key is in SSH2 (SECSH) format, run the following OpenSSH command to convert the
certificate from SSH2 to OpenSSH: ssh-keygen -i -f ~/.ssh/id_dsa.ssh2.pub > ~/.ssh/id_dsa.pub

On each of the authentication dialog boxes you can enable the option Remember values. When
selected, the values you entered are assigned to the associated model variables.

Using Model Variables for SSH Authentication
You can specify authentication credentials using model variables. Model variables are placeholders for
data and are very useful when specifying fixed values, such as host user IDs and passwords.

A list of default variables are listed when you create a new model. If you selected Remember values
when setting values using the Design Tool, the values are assigned to the associated model variable.

Special character ~ can be used to specify the home directory, independent of the platform. For
example, ~/.ssh/id_rsa.pub refers to the public key in the users .ssh home subdirectory.

•

•

1.

2.

Note

4.3.3 Using SSH: Overview

- 54/141 -

Setting model variable values in the Administrative Console
Model variable values that are set using the Design Tool are stored in the model file. To remove this
sensitive data from the model file and store it on the Session server:

After setting authentication variable values in the Variables dialog box, test the model.

If successful, remove the values for the password, username, and passphrase variables.

Deploy the model to the Session server.

In the Administrative Console, open the Properties page for the session pool associated with the model
and re-enter the model variable values. If you need to provide a unique model variable value for each
session in the pool, create a model variable list that contains a set of values for the model variables in
the model on which your session pool is based.

Variable name Map to setting

userID Host User Name

password Host password

SSHPublicKey SSH Public key file

SSHPrivateKey SSH Private key file

SSHPassPhrase SSH passphrase for the private key

SSHKnownHosts File with public keys of SSH servers to connect to

1.

2.

3.

4.

4.3.3 Using SSH: Overview

- 55/141 -

If the Session server is not able to connect because the values are not set, an error message is written
to the Session server log file: An error occurred in communications - SSH password authorization failed
(username/password).

Public Key Authentication
Enter your VT host credentials to log on to the host. This dialog box appears if you are using SSH public
key authentication to connect.

Username - Enter your VT host username to log on to the host.

Passphrase - Enter the passphrase to decrypt your private key. If your private key is not encrypted,
leave this field blank.

Public Key file - Enter or browse to the location of your public key file.

Private Key file - Enter or browse to the location of your private key file.

Enter Username and Password
You must supply authentication credentials to establish a connection to the host.

Supply a username to log on to the host.

For the connection to be established, supply the needed password.

This dialog box appears if you have not specified values for the model variables.

4.3.4 Using SSL/TLS
Telnet Secure Socket Layer (SSL) and Transport Layer Security (TLS) security protocols are available for
3270 and 5250 session types, and Telnet Extended SSL/TLS support is available for 3270 session types.
These Telnet options apply to the connection between a host and the Host Integrator session server or
Design Tool. They do not apply to the connection between the client and the Host Integrator session
server.

How to enable TLS/SSL encryption
To configure SSL/TLS encryption in your model:

The Design Tool must be offline and disconnected.

To modify an existing model, click Connection > Session Setup. To configure a new model, click File >
New to display the New Model dialog.

Select the Transport "Use SSL/TLS" checkbox (for 3270 or 5250).

• •

• •

• •

• •

•

•

1. 1.

2. 2.

3. 3.

4.3.4 Using SSL/TLS

- 56/141 -

After connecting to the host using the Design Tool, you can determine the negotiated cipher, see
Settings > View Settings > Host Communication > Telnet > Secure Host SSL Negotiated Cipher. The TLS
protocol version and negotiated cipher are also logged in model debug messages (.vmr files).

Enabling FIPS 140-2 Validated Encryption
The Federal Information Processing Standards (FIPS) is used by US government agencies. When using
TLS/SSL, you can enable FIPS 140-2 validated encryption. To enable this feature, set an operating system
environment variable, VHI_FIPS=1 , before you start the session server or Design Tool.

On Linux, you may need to export the environment variable so it is available to the process running
the session server.

To confirm FIPS 140-2 encryption is enabled:

Open the Administrative Console.

You can verify that FIPS is enabled on the Session Server > Properties > General > Security panel and
in the session server log. FIPS mode is not supported on the IBM AIX platform.

Certificate Checking
This section describes how the Design tool and Session Server verify a secure connection to a 3270 or
5250 host. It does not apply to other TLS connections made by, or to, VHI components.

As part of the standard TLS handshake, the host will send a chain of certificates to the Design tool or
Session Server.

The following checks are performed: 1. The certificate chain from the host must be complete, and
signed by one of the trust anchors in the machine's trust store. 2. The name of the host must be equal
to one of the Subject Alternative Names (SAN) listed in the server certificate. Note that in VHI, the host
name can be specified in the model or in the deployment descriptors.

VHI does not perform revocation checks.

VHI does not download CA certificates using AIA extensions.

If the host presents a certificate chain from a well-known CA, then your machine's trust store should
already be correct, and no changes are needed. If the host presents a self-signed certificate, or if the
administrator has used a proprietary CA, then you can modify your trust store. Do not grab certificates
from the connection, always contact the administrator of the host and ask for the correct certificate(s)
to import.

4. 4.

Note

1. 1.

2. 2.

4.3.4 Using SSL/TLS

- 57/141 -

The trust store used is not part of VHI, it is global to the machine on which the Design tool or Session
Server are running. If you modify this trust store, these changes may affect other programs. It also
means that uninstalling VHI will not revert those changes.

Importing certificates
Windows: you can import a certificate using CertMgr /add <filename> /s /r localMachine root .

Alternatively, you can use certlm.msc . Place the certificate into the "Trusted Root Certification
Authorities".

By importing the certificate into the "localMachine" store it becomes available to all users, which is
necessary for the Session Server.

Linux: you can import a certificate (in PEM format) using sudo trust anchor <filename> .

Validation Errors
Error 3055 indicates a validation error and contains a detail string. Here are a few validation errors that
can occur.

unable to get issuer certificate
The issuer certificate of a locally looked up certificate could not be found. This normally means the
list of trusted certificates is not complete.
Solution: ask the administrator to configure the host to send all intermediary certificates in the TLS
handshake.
Solution: contact the administrator of the host and ask for the correct certificate(s) to import.

certificate has expired
The certificate has expired: the notAfter date is before the current time.
Solution: ask the administrator of the host to install a new certificate.

self-signed certificate
The host certificate is self-signed and the same certificate cannot be found in the list of trusted
certificates.
Solution: import the self-signed certificate into the trust store.

self-signed certificate in certificate chain
The certificate chain could be built up, but no suitable trust anchor (which typically is a self-signed
root certificate) could be found in the trust store.
Solution: contact the administrator of the host and ask for the correct certificate(s) to import.

host name mismatch
The name of the host in the model or in the model's deployment descriptor does not match.

Note

•

•

•

•

•

4.3.4 Using SSL/TLS

- 58/141 -

Solution: change the model or the deployment descriptor to use one of the SANs in the host
certificate.

ip address mismatch
You are connecting to the host using an IP address and it is not one of the SANs.
Solution: connect using a name, not an IP address. Certificates with a SAN IP address are rare.

Other errors can also occur. Refer to the OpenSSL documentation for a full list.

Altering the configuration of TLS connections
The configuration of host TLS connections is performed using an OpenSSL Configuration file,
%VHI_ROOT%/bin/openssl-vhi.cnf . In this file, you will find a section [hostssl] where you can make
changes to the configuration.

Note that the configuration file is read once, at startup. To see the effect of your edits, restart the
Design Tool or Session Server.

Disabling TLS 1.3
If your host fails to negotiate TLS 1.3 connections, you can disable the use of this protocol version. In
the configuration file, change MaxVersion = TLSv1.3 to MaxVersion = TLSv1.2 .

Enabling SSL 3.0, TLS 1.0, or TLS 1.1
TLS 1.1 and earlier protocol versions are disabled by default. If your host does not yet support TLS 1.2 or
TLS 1.3, you may see errors related to TLS version not supported in Design Tool, the session server log,
or model debug messages (.vmr file). To enable these protocols:

change MinVersion = TLSv1.2 to MinVersion = TLSv1.1 , MinVersion = TLSv1 , or
MinVersion = SSLv3

uncomment the CipherString line by removing the initial # character

In this line, change :@SECLEVEL=1 to :@SECLEVEL=0 .

Modifying the ciphers offered to the host
If you wish, you can control the ciphers offered in the handshake. The CipherString setting controls the
ciphers used for TLS 1.2 and earlier; the Ciphersuites setting controls the ciphers used for TLS 1.3. Refer
to the OpenSSL 3.0 documentation to see possible values for these settings.

Client Authentication
If the host requires client authentication from Host Integrator, your private key and client certificate
chain must be stored in a PEM file.

If your file is named %VHI_ROOT%/securehost/certificate.pem add the following line to the hostssl section:

•

1.

2.

3.

4.3.4 Using SSL/TLS

- 59/141 -

Certificate = ${ENV::VHI_ROOT}securehost/certificate.pem

The file must be in PEM format with the unencrypted private key and the certificate chain in chain order.

If your certificate and private key are in PFX format, you can convert it to OpenSSL PEM format using
the OpenSSL command line utility in the %VHIROOT%/bin folder.

Changing the Linux trust store
The actual location of the trust store on Linux is not standard. On startup, the code will test for the
presence of an ordered list of candidates. If a file is present, it will be used as the trust store.

/etc/ssl/certs/ca-certificates.crt

/etc/pki/tls/certs/ca-bundle.crt

/etc/ssl/ca-bundle.pem

/etc/pki/tls/cacert.pem

/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem

/etc/ssl/cert.pem

You can change the file used as the trust store by changing the VerifyCAfile setting.

Disabling Certificate Validation
For troubleshooting purposes, you can temporarily disable verification. In the hostssl section, remove
the line VerifyMode = Peer to disable verification.

Permanently disabling verification poses a security risk and is not recommended.

4.4 Configuring Sessions

4.4.1 Configuring a Host Session
Use the Session Setup or the New Model dialog box to connect to a host and specify emulation options.
To open the Session Setup dialog box, click Session Setup on the Connection menu.

You can open the Session Setup dialog box if you have not connected it to a host session. Otherwise,
this option is unavailable. Use the Connection Properties dialog box to review settings after you are
connected.

1.

2.

3.

4.

5.

6.

Note

4.4 Configuring Sessions

- 60/141 -

The options in the Session Setup dialog box vary according to the values you select for session type and
transport type. Click one of the following for more information:

Configuring a 3270 terminal session

Configuring a 5250 terminal session

Configuring a VT terminal session

Configuring an HP terminal session

Once you have set up the options in this dialog box, you can click Connect to connect immediately, or
click OK to close the dialog box. If you click OK, you can always connect later. Connection settings can be
saved to a settings file (.dtool) with other configuration information.

Configuring a 3270 Terminal Session
The following options are available in the Session Setup or New Model dialog box.

After you connect, you can review these settings in the Connection Properties dialog box.

•

•

•

•

Options Description

Session Type Specifies the type of session to configure.

Model ID Specifies the terminal (also known as a display station) you want the Design
Tool to emulate.

Transport
Type

This setting specifies the transport type being used to connect to the host. You
can use Telnet, Telnet Extended, SSH, or NS/VT transport types as well as
Secure Socket Layer (SSL) and Transport Layer Security (TLS) security protocols.
Telnet is available for 3270,5250, VT, and HP session types, while Telnet
Extended is only available for IBM 3270 session types. Choose SSH to connect
to a VT host using SSH security protocols. NS/VT is available for HP session
types.

Use SSL/TLS See Using SSL/TLS

Host Name
or IP
Address

Use this box to identify the host to which you want to connect. You can either
select a host from the drop down list or type one into the host name field.
When you start the Design Tool without a value for this setting, the Design
Tool looks for the Hosts file in the same folder as Wsock32.dll. If you are using
third-party TCP/IP software, your Hosts file may be in another location. When it
finds a Hosts file, the Design Tool changes the value of this setting.

4.4.1 Configuring a Host Session

- 61/141 -

More information

Using SSL/TLS

Using SSH

Advanced 3270 Telnet and Telnet Extended dialog boxes
You can configure the following options in these dialog boxes:

Options Description

Port Number Specifies the host port or socket number that the Telnet session should use.
You can enter any number between 0 and 65,535 in this field. You can
configure Port in either the Session Setup or View Settings dialog boxes. The
default port number for Telnet is 23.

Device Name Specifies the Device name (also known as LU name) to which to connect.
Supports up to 32 characters. You can map the Device Name setting to a
model variable in the Model menu > Variables. This allows a different setting
for each server runtime session. If a model variable is mapped to the Device
Name setting, the Device Name configured in Session Setup will be used as a
default unless changed by a session pool model variable list or a Host
Integrator API SetModelVariable method.

•

•

Option Description

Terminal ID In a 3270 session with a Telnet transport type, this setting overrides the Model
ID selected in Session Setup. It allows you to specify a Terminal Model that Host
Integrator does not implicitly support (but might work with), such as Fujitsu.
For best results, specify one of the Terminal Models available in Session Setup
and leave the Terminal ID box empty. When the Terminal ID box is empty, the
Design Tool uses the Model ID defined in Session Setup by default. Only specify
a Telnet Terminal ID, if after experimenting with other available Terminal
Models IDs in Session Setup, you still cannot connect to the host. If you must
define a Telnet Terminal ID, specify a string you know is acceptable to the host.
Otherwise, you may experience problems connecting to the host and emulation
problems after connecting to the host. Typically, these types of problems occur
if the host is not configured to recognize the terminal specified in the Telnet
Terminal ID string.

4.4.1 Configuring a Host Session

- 62/141 -

Configuring a 5250 session
The following options are available in the Session Setup or New Model dialog box.

After you connect, you can review these settings in the Connection Properties dialog box.

Option Description

Telnet
Location

Specifies where the connection originated. Can also be used to provide
informational messages to the host from the computer. You are not required to
enter anything in this box. Supports up to 260 characters. You cannot change
this value while you're connected to a gateway.

Send Keep
Alive
packets

To become aware of connection problems as they occur, you can configure your
model to Send Keep Alive packets.

Keep Alive
Timeout

The interval between the keep alive requests sent by the Design Tool. The range
of values is 1-9999 seconds, and the default is 600 seconds.

Options Description

Session Type Specifies the type of session to configure.

Model ID Specifies the terminal (also known as a display station) you want the Design
Tool to emulate.

Transport
Type

This setting specifies the transport type being used to connect to the host. You
can use Telnet, Telnet Extended, SSH, or NS/VT transport types as well as
Secure Socket Layer (SSL) and Transport Layer Security (TLS) security protocols.
Telnet is available for 3270,5250, VT, and HP session types, while Telnet
Extended is only available for IBM 3270 session types. Choose SSH to connect
to a VT host using SSH security protocols. NS/VT is available for HP session
types.

Use SSL/TLS See Using SSL/TLS

Host Name
or IP
Address

Use this box to identify the host to which you want to connect. You can either
select a host from the drop down list or type one into the host name field.
When you start the Design Tool without a value for this setting, the Design
Tool looks for the Hosts file in the same folder as Wsock32.dll. If you are using
third-party TCP/IP software, your Hosts file may be in another location. When it
finds a Hosts file, the Design Tool changes the value of this setting.

4.4.1 Configuring a Host Session

- 63/141 -

More information

Using SSL/TLS

Using SSH

Advanced 5250 Telnet dialog box
You can configure the following options in this dialog box:

Options Description

Port Number Specifies the host port or socket number that the Telnet session should use.
You can enter any number between 0 and 65,535 in this field. You can
configure Port in either the Session Setup or View Settings dialog boxes. The
default port number for Telnet is 23.

Device Name Specifies the Device name (also known as LU name) to which to connect.
Supports up to 32 characters. You can map the Device Name setting to a
model variable in the Model menu > Variables. This allows a different setting
for each server runtime session. If a model variable is mapped to the Device
Name setting, the Device Name configured in Session Setup will be used as a
default unless changed by a session pool model variable list or a Host
Integrator API SetModelVariable method.

•

•

Option Description

Telnet
location

Specifies to the host where the connection originated. Can also be used to
provide informational messages to the host from the computer. You are not
required to enter anything in this box. Supports 260 characters.You cannot
change this value while you're connected to a gateway.

Username Enter your username for the AS/400 Sign On screen if you want to bypass
being prompted for it at connection time. You'll also need to enter your
password.

Password Enter your password for the AS/400 if you want to bypass being prompted for
it at connection time. You'll also need to enter your username.

Auto SignOn Select this option to have the transport protocol automatically log you on to
the host as soon as you establish a connection in the Design Tool. By default,
this check box is not selected.

Send Keep
Alive packets

To become aware of connection problems as they occur, you can configure
your model to Send Keep Alive packets.

4.4.1 Configuring a Host Session

- 64/141 -

Configuring a VT Session
The following options are available in the Session Setup dialog box.

Some of these options are dependent on the transport type you are using, either Telnet or SSH.

Option Description

Keep Alive
Timeout

The interval between the keep alive requests sent by the Design Tool. The
range of values is 1-9999 seconds, and the default is 600 seconds.

Options Description

Session Type Specifies the type of session to configure.

Terminal
Type

Specifies the terminal (also known as a display station) you want the Design
Tool to emulate.

Transport
Type

This setting specifies the transport type being used to connect to the host. You
can use Telnet, Telnet Extended, SSH, or NS/VT transport types as well as
Secure Socket Layer (SSL) and Transport Layer Security (TLS) security protocols.
Telnet is available for 3270,5250, VT, and HP session types, while Telnet
Extended is only available for IBM 3270 session types. Choose SSH to connect
to a VT host using SSH security protocols. NS/VT is available for HP session
types.

Host Name
or IP
Address

Use this box to identify the host to which you want to connect. You can either
select a host from the drop down list or type one into the host name field.
When you start the Design Tool without a value for this setting, the Design
Tool looks for the Hosts file in the same folder as Wsock32.dll. If you are using
third-party TCP/IP software, your Hosts file may be in another location. When it
finds a Hosts file, the Design Tool changes the value of this setting.

Port Number Specifies the host port or socket number that the SSH session should use. You
can enter any number between 0 and 65,535 in this field. You can configure
Port in either the Session Setup or View Settings dialog boxes. The default port
number for SSH is 22.

4.4.1 Configuring a Host Session

- 65/141 -

See Customizing the VT Terminal for Advanced Telnet and SSH Configurations.

After you connect, you can review these settings in the Connection Properties dialog box.

Configuring an HP Session
On an HP terminal, with the Transport Type set to Telnet or NS/VT, the following options are available
in the Session Setup and New Model dialog box.

After you connect, you can review these settings in the Connection Properties dialog box.

Options Description

Device Name Specifies the Device name (also known as LU name) to which to connect.
Supports up to 32 characters. You can map the Device Name setting to a
model variable in the Model menu > Variables. This allows a different setting
for each server runtime session. If a model variable is mapped to the Device
Name setting, the Device Name configured in Session Setup will be used as a
default unless changed by a session pool model variable list or a Host
Integrator API SetModelVariable method.

Options Description

Session Type Specifies the type of session to configure.

Model ID Specifies the terminal (also known as a display station) you want the Design
Tool to emulate.

Transport
Type

This setting specifies the transport type being used to connect to the host. You
can use Telnet, Telnet Extended, SSH, or NS/VT transport types as well as
Secure Socket Layer (SSL) and Transport Layer Security (TLS) security
protocols. Telnet is available for 3270,5250, VT, and HP session types, while
Telnet Extended is only available for IBM 3270 session types. Choose SSH to
connect to a VT host using SSH security protocols. NS/VT is available for HP
session types.

Host Name
or IP Address

Use this box to identify the host to which you want to connect. You can either
select a host from the drop down list or type one into the host name field.
When you start the Design Tool without a value for this setting, the Design
Tool looks for the Hosts file in the same folder as Wsock32.dll. If you are using
third-party TCP/IP software, your Hosts file may be in another location. When
it finds a Hosts file, the Design Tool changes the value of this setting.

4.4.1 Configuring a Host Session

- 66/141 -

See Customizing HP for advanced HP Telnet configuration information.

More informationi

Customizing the Terminal

Setting Up a Connection

4.4.2 Customizing the Terminal
A quick way to customize the terminal is to create a model using a pre-configured settings file provided
with Host Integrator. The settings file has defaults appropriate for the terminal session you are
modeling.

Customizing the 3270 Terminal

Customizing the 5250 Terminal

Customizing the VT Terminal

Customizing the HP Terminal

Customizing the 3270 Terminal
You can control various aspects of the Design Tool's behavior as a 3270 terminal. First, configure a 3270
session and then configure any of the options available from the Settings menu to customize your 3270
terminal.

3270 Terminal Setup

National character set

The values identify the various host character sets that Host Integrator supports. The Design Tool
uses this setting to choose a conversion table that it uses to convert host characters (EBCDIC) into
PC characters (ANSI). This setting should match the national character set used by your host
system. If it doesn't match, then some characters, such as accents, may not display correctly. See
your host documentation for definitions of the characters in each set. The default value is US
English.

Options Description

Port Number Select one of the following depending on which transport type you selected in
the Session Setup or New Model dialog box; Telnet or NS/VT.The default port
number for Telnet is 23. The default port number for NS/VT is 1570.

•

•

•

•

•

•

• •

4.4.2 Customizing the Terminal

- 67/141 -

You can also define a custom code page. After creating the custom code page file, select Custom
in the national character set list. A set of examples is included with Host Integrator; see Creating a
Custom Code Page for details.

Country Extended Graphics Code

When this check box is selected, additional characters are available in the configured National
character set. See your host documentation for details. By default this box is selected.

You can change the settings in the Terminal Setup dialog box if you have opened a model but you
are not connected to it.

If you have no model open, this dialog box is unavailable.

If you are connected to a model, the settings in this dialog box can be viewed but cannot be
changed.

Default 3270 keyboard mapping and functions

• •

• •

• •

Function Keystroke Environment Function

Alt Cursor Alt+6 host

Attention Ctrl+F1 host Interrupts the host application
program. Not all host Telnet
programs support the Attention key.

Backspace Backspace host

Backtab Shift+Tab host

Clear Ctrl+F2 or
Scroll Lock

host When you first log on, your host
connection is in implicit state,
meaning that there is only a single
partition. In implicit state, Clear
erases all data in the partition. When
there are multiple partitions, Clear
erases all data in all partitions, and
returns the emulator to implicit state.
When there are multiple partitions,
use the Clear Partition function to
clear only the current partition. Most
host applications use only a single
partition.

4.4.2 Customizing the Terminal

- 68/141 -

Function Keystroke Environment Function

ClearPartition Ctrl+F4 host Erases all data in the current
partition.

Connect Alt+C Design Tool

Copy Ctrl+C Design Tool

Cursor Blink Alt+8 host Changes the blink rate of the cursor,
cycling through two options (Blinking
Disabled and Windows System).

Cursor Select Ctrl+F3 host Simulates a light pen select in the
field containing the cursor. Sets or
clears the attribute indicating that a
field has been modified. You can use
the right mouse button in selectable
terminal fields to perform a cursor
select; in this way, the mouse can be
used to simulate a light pen.

Delete
Character

Delete host Deletes the character the cursor is on.

Delete Word Alt+Delete host Deletes one word of text from an
input field.

Disconnect Alt+D Design Tool

Down Down Arrow host

Duplicate Ctrl+Page Up host Inserts a dup character into the
buffer. The cursor moves to the first
position of the next unprotected field
if the screen is formatted, or to row 1,
column 1, if the screen is
unformatted.

Enter Enter host

EraseEOF End host Erases all data from the cursor
location to the end of the current
field.

4.4.2 Customizing the Terminal

- 69/141 -

Function Keystroke Environment Function

Erase Input Alt+F5 host Erases all unprotected fields in the
current partition.

Field Delimit Ctrl+Alt+F host Toggles IBM standard and extended
field delimiters on or off during a host
session. Toggling can be useful for
troubleshooting.

Field Mark Ctrl+Page
Down

host Inserts a field mark character.

Home Home host

Insert Insert host

Keyclick Alt+7 host Toggles the keyclick on or off. When
this function is on, the PC emits a low-
pitched sound in numeric fields, a
high-pitched sound in alphabetic
fields, and no sound in protected
fields.

Left Left Arrow host

Left, double
speed

Alt+Left
Arrow

host

New Line Shift+Enter host

Next Window Alt+N Design Tool

NumLock Num Lock host

PA1 Page Up host

PA2 Page Down host

PA3 Ctrl+3 host

4.4.2 Customizing the Terminal

- 70/141 -

Function Keystroke Environment Function

Pan Left Ctrl+Left
Arrow

host Moves the portion of the current
partition visible on the screen so that
a different part of the partition is
visible. The distance panned is
determined by the host upon
establishment of the partition. If Host
Integrator can display the entire
partition on the terminal screen, this
function has no effect.

Pan Right Ctrl+Right
Arrow

host Moves the visible portion of the
current partition so that a different
part of the partition is visible. The
distance panned is determined by the
host upon establishment of the
partition. If Host Integrator can
display the entire partition on the
terminal screen, this function has no
effect.

Partition Jump Ctrl+Tab host Moves the cursor to the next
partition. Continuing to use this
function cycles you through all
available partitions.

Paste Ctrl+V Design Tool

PF1-PF12 F1-F12 host

PF13-PF24 Shift+F1+Shift
+F12

host

Reset Esc host

Right Right Arrow host

Right, double
speed

Alt+Right
Arrow

host

4.4.2 Customizing the Terminal

- 71/141 -

Customizing the 5250 Terminal
You can control various aspects of the Design Tool's behavior as a 5250 terminal. First, configure a 5250
session and then configure any of the options available from the Settings menu to customize your 5250
terminal.

5250 Terminal Setup

National character set

Function Keystroke Environment Function

Scroll Down Ctrl+Down
Arrow

host Moves the visible portion of the
current partition so that a different
part of the partition is visible. The
distance scrolled is determined by the
host upon establishment of the
partition.

Scroll Up Ctrl+Up Arrow host Moves the visible portion of the
current partition so that a different
part of the partition is visible. The
distance scrolled is determined by the
host upon establishment of the
partition.

Show
Command
Line

Alt+L Design Tool

SysReq Alt+Print
Screen

host The definition of this key and its
values vary by host application.

Tab tab host The definition of this key and values
vary by host application.

Toggle
Terminal
Keyboard

Alt+K Design Tool

Toggle
Toolbar

Alt+B Design Tool

Up Up host

• •

4.4.2 Customizing the Terminal

- 72/141 -

The values identify the various host character sets that Host Integrator supports. The Design Tool
uses this setting to choose a conversion table that it uses to convert host characters (EBCDIC) into
PC characters (ANSI). This setting should match the national character set used by your host
system. If it doesn't match, then some characters, such as accents, may not display correctly. See
your host documentation for definitions of the characters in each set. The default value is US
English.

You can also define a custom code page. After creating the custom code page file, select Custom
in the national character set list. A set of examples is included with Host Integrator; see Creating a
Custom Code Page for details.

You can change the settings in the Terminal Setup dialog box if you have opened a model but you
are not connected to it.

If you have no model open, this dialog box is unavailable.

If you are connected to a model, the settings in this dialog box can be viewed but cannot be
changed.

Default 5250 keyboard mapping

•

•

Function Keystroke Environment Description

Alt Cursor Alt+6 host

Attention Esc host Interrupts the host application program. Workstation operators
use the Attn key to alert the AS/400 system that a requested
function (such as Enter) is not being honored. The Attn key is
allowed whether the keyboard is locked or unlocked.

Backspace Backspace host Moves the cursor back to the previous position in which data
can be entered. If the cursor is already in the first position of an
input field, Backspace moves back to the last position in the
preceding input field.

Backtab Shift+Tab host Moves the cursor back to the first position in the current input
field. When the cursor isn't on an input field, Backtab moves it
to the first position in the previous input field. If the screen
doesn't contain input fields, Backtab moves the cursor to row 1,
column 1.

Begin Bold Ctrl+B host (word
processing)

Begin
Underline

Ctrl+U host (word
processing)

4.4.2 Customizing the Terminal

- 73/141 -

Function Keystroke Environment Description

Bottom of
Page

Ctrl+Down
Arrow

host (word
processing)

Carrier
Return

Left Ctrl,
Right Ctrl

host (word
processing)

Center Ctrl+C host
(word
processing)

Clear Pause host Signals the host to erase all user-entered text from the current
screen.

Connect Alt+C Design Tool

Delete Delete host Deletes the character at the cursor position. All characters to
the right of the cursor (in the same input field) shift one
position to the left. Null characters are inserted at the right end
of the field as characters are deleted. If you invoke this function
when the cursor is not in an input field, the input inhibit symbol
appears in the status line. (In the 5250 status line, the input
inhibit indicator is the letters II in inverse video.) Press Reset
(Left Ctrl) to clear the symbol and enable input.

Disconnect Alt+D Design Tool

Down Down Arrow host

Down
Double

Alt+Down
Arrow

host Moves the cursor down one or more lines. The number of lines
the cursor moves is determined by the value of Vertical speed in
the Terminal Setup dialog box. The default is two lines.

Duplicate Shift+Insert host Uses the data from the equivalent field in the previous record as
the contents of this field. If a field is programmed to allow
duplication, you'll see a symbol at the cursor position when you
invoke this function. Invoking this function when the cursor is
not in an input field or not in a field that supports this function
causes the input inhibit symbol to appear in the status line. (In
the 5250 status line, the input inhibit indicator is the letters II in
inverse video.) Press Reset (Left Ctrl) to clear the symbol and
enable input.

4.4.2 Customizing the Terminal

- 74/141 -

Function Keystroke Environment Description

End Bold Ctrl+J host (word
processing)

End of Line Ctrl+Right
Arrow

host (word
processing)

End
Underline

Ctrl+J host (word
processing)

Enter Enter host Transmits any data you have typed in the Terminal window to
the host application.

Erase EOF End host Erases all data from the cursor position to the end of the
current field, without moving the cursor.

Erase Input Alt+End host Erases the contents of all input fields on the screen and moves
the cursor to the beginning of the first input field. If the screen
has no input fields, Erase Input moves the cursor to row 1,
column 1 on the screen, and no data is erased.

Extended
Graphics

Alt+Right
Shift

host The following special characters are available in extended
graphics mode:

Host Integrator remains in extended graphics mode until you
press Alt+Right Shift again or Reset (Left Ctrl).

F1-F12 F1-F12 host

F12-F24 Shift+F1-
Shift+F12

host

4.4.2 Customizing the Terminal

- 75/141 -

Function Keystroke Environment Description

Field Exit Right Ctrl host Moves the cursor out of an input field, inserting null characters
from the current cursor location to the end of the field. The
cursor moves to the first position of the next input field. If you
use Field Exit in a right-adjust field, the data to the left of the
cursor shifts to the right. The vacated positions are filled with
zeros or blanks as specified by the program, and the cursor
advances to the next input field.

Field Minus Numeric
keypad –

host Moves the cursor out of a signed-numeric or numeric-only field,
inserting a minus sign in the last position of a signed-numeric
field, or changing the last position in a numeric-only field to an
alphabetic character that tells the system that this field has a
negative value.

Field Plus Numeric
keypad +

host Except in a signed-numeric or numeric-only field, this function
is identical to Field Exit. In a signed-numeric field, this function
moves the cursor to the next field, removing a minus sign if
there is one in the last position. In a numeric-only field, this
function moves the cursor to the next field, changing the last
position to an alphabetic character that tells the system that
this field has a positive value.

Half Index
Down

Ctrl+H host (word
processing)

Half Index
Up

Ctrl+Y host (word
processing)

Help Scroll Lock host Provides help from the system or, when an error condition
exists, an explanation of the error condition. See your host
documentation for information on error codes.

4.4.2 Customizing the Terminal

- 76/141 -

Function Keystroke Environment Description

Hex Mode Alt+F7 host Use this function before entering a hexadecimal value for a
character. To enter a hexadecimal value, type two characters.
These characters can be 0-9 or a-f. No other input is allowed in
hex mode. When you press Alt+F7 to put Host Integrator in hex
mode, a small h appears on the 3488 status line (default), a little
to the right of center. Reset (Left Ctrl) causes Host Integrator to
exit hex mode. When you enter the first character of your hex
value, the h in the status line becomes a capital H. If Preserve
entry mode is selected, pressing Left Ctrl at this point takes the
character out of the buffer but doesn't exit hex mode. (This is a
way of retracting the character you typed. To show this, the
capital H becomes a small h once again. Host Integrator now
expects you to enter two characters for your hex value.) Press
Left Ctrl again to back completely out of hex mode.

Home Home host Moves the cursor to the first input position on the screen. If the
screen contains no input fields, Home moves the cursor to row
1, column 1. If you use this function when the cursor is already
in the first input position on the screen, Host Integrator
transmits a record backspace aid key instead.

Insert Insert host The insert symbol appears in the 3488 status line (default). (In
the 5250 status line, the letters IM are displayed in inverse
video when Host Integrator is in insert mode.) Characters you
type when the terminal is in insert mode are inserted at the
cursor position. As you type, existing characters at and to the
right of the cursor position shift one position to the right for
each character you type. There must be a null character at the
right end of the insert field for each character you type in insert
mode. If you attempt to insert more characters than there are
nulls, an X appears in the status line and input is inhibited.
Press Reset Left Ctrl to remove the symbol and enable input.

Insert
Symbols

Ctrl+A host (word
processing)

Left Left Arrow host

Left
Double

Alt+Left
Arrow

host Moves the cursor one or more columns to the left.

4.4.2 Customizing the Terminal

- 77/141 -

Function Keystroke Environment Description

New Line Shift+Enter host Moves the cursor to the first input position on the next line. If
there are no input positions on the next line, the cursor moves
to the first input position on the next line with an input field. If
you execute Newline when there are no lines between the
current line and the end of the screen that contains input fields,
it wraps back to the first line in the screen. Newline differs from
Tab in that it can be used to drop to the second line of a multi-
line field. Tab always moves to the next field.

Next Stop Ctrl+N host (word
processing)

Next Text
Column

Ctrl+D host (word
processing)

Next
Window

Alt+N Design Tool

PA1-PA3 Alt+F1-Alt+F3 host

Page Down Page Down host Scrolls down one page in the current host screen (equivalent to
Roll Up).

Page End Ctrl+P host (word
processing)

Page Up Page Up host Scrolls up one page in the current host screen (equivalent to
Roll Down).

Plus CR
Mode

Alt+F12 host Execute this function once and Host Integrator shows
hexadecimal codes in front of each field in the Terminal window.
These codes indicate the field and display attributes for each
field. If you've configured Host Integrator to use the 3488 status
line (default) or the debug status line, then d appears in the
status line. Execute this function again and Host Integrator
shows different two-character hexadecimal codes indicating the
extended character buffer values for each field. A c appears in
the 3488 or debug status line. Execute this function a third time
and Host Integrator shows two-character hexadecimal codes
indicating the character attributes for each character in the
Terminal window. An a appears in the 3488 or debug status
line.Press Reset Left Ctrl twice to exit Plus CR mode.

4.4.2 Customizing the Terminal

- 78/141 -

Function Keystroke Environment Description

Print no mapping host Sends an image of the screen to the host. How and where that
image is printed depends on the configuration of the host
session.

Print
Screen

Print Screen Design Tool Prints the contents of the Terminal window.

Required
Carriage
Return

Right Ctrl host (word
processing)

Required
Space

Ctrl+Spacebar host (word
processing)

Required
Tab

Ctrl+Tab host (word
processing)

Reset Left Ctrl host Press Reset once to exit from various modes and clear operator
errors. Press Reset twice to exit Plus CR mode.

Right Right Arrow host

Right
Double

Alt+Right
Arrow

host Moves the cursor one or more characters to the right.

Roll Down Shift+Down
Arrow

host Scrolls up one page in the current host screen (equivalent to
Page Up).

Roll Up Shift+Up host Scrolls down one page in the current host screen (equivalent to
Page Down).

Rule Alt+Page
Down

host Toggles the rule line into or out of view. The rule line can be a
horizontal line, a vertical line, or both, indicating the row and/or
column containing the cursor.

Show
Command
Line

Alt+L Design Tool

SLP Auto
Enter

not mapped host The full name of this key is Selector Light Pen Auto Enter. It
simulates a light pen select at the cursor location.

Stop Ctrl+S host (word
processing)

4.4.2 Customizing the Terminal

- 79/141 -

Function Keystroke Environment Description

SysReq Alt+Print
Screen

host The SysReq key is allowed whether the keyboard is locked or
unlocked. Use this function to: select and start an alternate job,
notify the host system that the terminal is ready to select a new
program, or request that the keyboard be unlocked.

Tab Tab host Moves the cursor from the current position to the first input
position in the next input field. If there are no input positions
after the current cursor position, Tab moves the cursor to the
first character position in the first input field on the screen. If
the screen doesn't contain input fields, Tab moves the cursor to
row 1, column 1 on the screen.

Tab
Advance

Ctrl+T host (word
processing)

Moves the cursor from the current position to the next defined
Tab stop. If there are no Tab stops in the current field, Tab
Advance moves the cursor to the first Tab stop in the next input
field on the screen. Tab Advance is defined for Text Assist mode
only.

Toggle
Toolbar

Alt+B Design Tool

Toggle
Terminal
Keyboard

Alt+K Design Tool

Top of
Page

Ctrl+Up host (word
processing)

Test
Request

Alt+Scroll
Lock

host Signals the host to enter test request mode, a set of test
programs created by IBM and provided by the AS/400. This
function is only available in the sign-on screen.

Up Up host

Up Double Alt+Up host Moves the cursor up one or more lines.

4.4.2 Customizing the Terminal

- 80/141 -

Customizing the VT Terminal
You can control various aspects of the Design Tool's behavior as a VT terminal. First, configure a VT
session and then configure any of the options available from the Settings menu to customize your VT
terminal.

Configuring VT Emulation Settings

Advanced VT SSH Options

Advanced VT or HP Telnet

VT Control Functions

Default VT Keyboard Mapping

VT Screen Setup

Configuring VT Emulation Options
From the Settings menu, click Terminal. The Emulation tab includes the following:

Host Character Set

The Host Integrator VT terminal supports the following character sets:

DEC Supplemental

ISO ISO Latin-1 (ISO-8859-1) This is the ISO-8859-1 character set

ISO Latin-9 (ISO-8859-15)

PC English (437)

PC Multilingual (850)

Windows Latin (1252)

The default value for the Host character set depends on the type of terminal you are emulating.
This setting reflects the current terminal state of VT Host Character Set, which can be changed by
the host. The associated default setting, saved with the model is VT Host Character Set Default.

When a soft reset is performed, or when initially connecting, the default host character set is used.

The current terminal state for the host character set can be altered by invoking the DECSTR
sequence. The Host character set may also be specified by the Select Character Set (SCS)
sequence.

Terminal ID

Function Keystroke Environment Description

Word
Underline

Ctrl+W host (word
processing)

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

• •

4.4.2 Customizing the Terminal

- 81/141 -

The setting in this list determines the response that Host Integrator sends to the host after a
primary device attributes (DA) request. This response lets the host know what terminal functions it
can perform. Host Integrator's response for each Terminal ID is exactly the same as the VT
terminal's response; some applications may require a specific DA response. This terminal ID
setting is independent of the Terminal type setting.

The options are VT100, VT220, VT320, VT420, and VT52.

This setting reflects the current terminal state of VT Terminal ID, which can be changed by the
host. The associated default setting, saved with the model, is VT Terminal ID Default.

Online

Host Integrator is always in either remote or local mode. Keeping this check box selected means
that Host Integrator can communicate with the host as a terminal; this is known as remote mode.
Host Integrator transmits each character typed from the keyboard to the host. As Host Integrator
receives characters from the host, it displays them on the screen.

When Host Integrator is in remote mode, but is not connected to a host computer, characters
typed at the keyboard do not appear on the screen.

When you clear this check box, Host Integrator can no longer communicate with the host; this is
known as local mode. In local mode, Host Integrator does not attempt to communicate with a
host computer. Characters entered from the keyboard appear on the screen, but are not
transmitted to the host; nor is any data from the host (for example, notification of a mail
message) received by Host Integrator.

Newline

Selecting this check box causes Host Integrator to send both a carriage return and linefeed when
you press Enter (known as new line mode). When Host Integrator receives a linefeed, form feed,
or vertical tab, it moves the cursor to the first column of the next line. When this check box is left
cleared (linefeed mode), the Return key sends only a carriage return. A linefeed, form feed, or
vertical tab received from the host moves the cursor down one line in the current column.

If lines on the display is being overwritten (that is, the host is not sending a linefeed along with a
carriage return), select this check box. If the New line check box is selected but the host does not
expect to receive a linefeed with each carriage return, lines will be double-spaced on the display.

This setting reflects the current terminal state of VT New Line, which can be changed by the host.
The associated default setting, saved with the model, is VT New Line Default.

Autowrap

Selecting this check box causes characters to wrap to the next line automatically when the cursor
reaches the right margin of the display. This setting is different from the VAX host's terminal wrap
characteristic, which is set with this DCL command: SET TERMINAL/[NO]WRAP

The host command determines whether characters wrap automatically when they reach the
maximum terminal width set by the host's SET TERMINAL/WIDTH command. Host Integrator's

• •

• •

• •

4.4.2 Customizing the Terminal

- 82/141 -

Autowrap option, in contrast, determines whether characters wrap when they reach the right
margin of the display. When Host Integrator is communicating with the host:

When Host Integrator is not communicating with the host (that is, the Online check box is not
selected), the Autowrap check box works as described in the last two items above, as if the host's
terminal wrap characteristic is not set.

National Replacement Character Set

This setting specifies a set of character translations that occur between the local computer and
the host in 7-bit mode. This setting affects how characters entered from the keyboard or from a
local file are transmitted to the host, and how characters sent from the host are written to local
files, to the screen, or both.

Translations are not performed unless the Use NRC setting is set to Yes.

This setting reflects the current terminal state of the National Replacement Set, which can be
changed by the host. The associated default setting, saved with the model, is VT National
Replacement Set Default.

Use NRC (7-bit) Set

This setting specifies whether the translations specified by the National Replacement Set setting
should be performed.

This setting reflects the current terminal state of VT Use NRC, which can be changed by the host.
The associated default setting, saved with the model, is VT Use NRC Default.

Answerback message

This setting allows you to enter an answerback message if the host expects an answer in response
to an ENQ character.

This setting reflects the current terminal state of VT Answerback Message, which can be changed
by the host. The associated default setting, saved with the model, is VT Answerback Message
Default.

If... Then...

If terminal wrap is set on
the host

Characters wrap when they reach the maximum terminal
width, regardless of the setting of the Autowrap check box.

If terminal wrap is not set
and the Autowrap check box
is selected

Characters wrap at the right margin of the display

If terminal wrap is not set
and the Autowrap check box
is cleared

Characters never wrap when they reach the right margin of
the display. New characters overwrite the character at the
right margin until a carriage return is entered

• •

• •

• •

4.4.2 Customizing the Terminal

- 83/141 -

Select the Insert special characters check box to include escape sequences and ASCII control codes
in the message.

Select Auto answerback to specify whether the answerback message is automatically sent to the
host after a communications line connection.

User Features Locked

This setting specifies whether certain features can be changed by the host. When this setting is
set to Yes, the following properties cannot be changed by the host: - Tab stops - The Keyboard
Locked setting which specifies whether or not the keyboard is locked (that is, it cannot be used). -
The Inverse Video setting which specifies whether the foreground and background colors for
screen attributes are reversed.

User-defined keys locked

When this setting is set to Yes, the Host Integrator locks the user keys to prevent the host from
clearing or redefining them. When user-defined keys are locked, the only way they can be
redefined is to first unlock them, and the only way to unlock them is by selecting No. This setting
is not saved to a Host Integrator settings file.

If you want to define new user keys or allow the host to define them, the keys must be unlocked.
If user keys are locked and an application tries to redefine a key using a DECUDK sequence, Host
Integrator ignores the sequence.

This setting reflects the current terminal state of VT User-defined Keys Locked, which can be
changed by the host. The associated default setting, saved with the model, is VT User-defined
Keys Locked Default.

Advanced VT SSH Options

User authentication

Click in the box next to any authentication method to clear or enable that method. You must
select at least one authentication method. You can use the arrows to specify your order of
preference. The first method you select that is supported by the server is used.

Cipher list

Use this list to specify the ciphers you want to allow for connections to the current host. When
more than one cipher is selected, the SSH client attempts to use ciphers in the order you specify,
starting from the top. To change the order, select a cipher from the list, then click the up or down
arrow. The cipher used for a given session is the first item in this list that is also supported by the
server.

HMAC list

Specifies the HMAC (hashed message authentication code) methods you want to allow. This hash
is used to verify the integrity of all data packets exchanged with the server. When more than one

• •

• •

• •

• •

• •

4.4.2 Customizing the Terminal

- 84/141 -

HMAC is selected, the SSH client attempts to negotiate an MAC with the server in the order you
specify, starting from the top. To change the order, select an HMAC from the list, then click the up
or down arrow.

Key exchange algorithms

Specifies which key exchange algorithms the client supports, and the order of preference. In some
cases, you may need to change the order of the key exchange algorithms to put DH Group14
SHA1 ahead of the other values. This is required if you want use the hmac-sha512 HMAC, or if you
see the following error during key exchange: "Unable to exchange encryption keys."

Host key algorithms

Specifies the host key type the client will accept from the server. You must select at least one host
key type. The SSH client will use a key type from the server in the order you specify, starting from
the top. To change the order, select an algorithm from the list, then click the up or down arrow.

Keep alive

When Keep Alive is selected, Host Integrator sends NOOP messages to the server through the
secure tunnel at the specified interval. Use this setting to maintain the connection to the server.
Use Interval in seconds to specify how frequently server alive messages are sent. If this setting is
not enabled, the SSH connection will not terminate if the server dies or the network connection is
lost.

The SSH Keep Alive setting is not related to the TCP keep alive setting that can be set in the
Windows registry to keep all TCP/IP connections from being timed out by a firewall. To change the
TCP/IP keep alive behavior, you need to edit the Windows registry.

Enable compression

When Enable compression is selected, the client requests compression of all data. Compression is
desirable on modem lines and other slow connections, but will only slow down response rate on
fast networks.

Only show FIPS validated values

Select this to filter the Cipher and HMAC lists to show only FIPS validated values. SSH only uses the
values you configure. If you choose a non-FIPS value while running in FIPS mode an error
message asking to you to specify a valid cipher displays.

Federal Information Processing Standards (FIPS) are guidelines established by the United States
government to standardize computer systems. To use FIPS 140-2 validated encryption, in a
Windows environment, you must first define an environment variable, VHI_FIPS = 1.

Advanced VT or HP Telnet
You can configure the following options in this dialog box:

Terminal ID

• •

• •

• •

• •

• •

• •

4.4.2 Customizing the Terminal

- 85/141 -

When Host Integrator connects to a Telnet host, the Telnet protocol negotiates a Telnet terminal
ID with the host. In general, this negotiation results in the selection of the correct terminal ID.
However, if you are having trouble running a host application, the negotiation between Telnet and
the host could be the issue.

This setting determines:

which screen control sequences the host sends to Host Integrator to format the screen.

the position of the cursor

what characters to display in a host application

To override Host Integrator's election of a terminal, select a terminal ID from the list (because this
list box is editable, you can just type in any value). If you enter a terminal ID that the host does not
recognize, Host Integrator reverts to a list of default values until one is found that the host
supports. The default terminal ID values are VT100, VT 220, VT 320, VT 420 and VT52 and HP and
HP2392A. The terminal type and the settings are independent of each other. If you enter a
terminal ID string, it may be up to 40 characters long taken from a set of uppercase letters, digits,
and the two punctuation characters, hyphen and slash. It must start with a letter and end with a
letter or digit.

Location (Optional)

Specifies to the host where the connection originated. Can also be used to provide informational
messages to the host from the PC. Usage conventions vary by site. Supports up to 260 characters.
You cannot change this value while you're connected to a gateway.

Send LF after CR

A "true" Telnet host expects to see a CrNu (carriage return/null) character sequence to indicate the
end of a line sent from the Design Tool. There are some hosts on the Internet that are not true
Telnet hosts, and they expect to see a Lf (linefeed) character following the Cr at the end of a line. If
you're connecting to this type of Telnet host, select this check box.

Initiate Option Negotiation

Specifies whether certain connection options, including whether to always request a binary mode
connection, should be negotiated when the Telnet connection is established. Connections to some
hosts on the Internet are expedited if this check box is cleared so that the Design Tool does not
attempt to initiate negotiations for Telnet options.

Request Binary

Telnet defines a 7-bit data path between the host and the terminal (Host Integrator). This type of
data path is not compatible with certain national character sets. Fortunately, many hosts allow for
8-bit data without zeroing the 8th bit, which resolves this problem. Select this check box to force
the host to use an 8-bit data path.

Set Host Window Size

•

•

•

• •

• •

• •

• •

• •

4.4.2 Customizing the Terminal

- 86/141 -

Sends the number of rows and columns to the Telnet host whenever they change. This enables
the Telnet host to properly control the cursor if the window size is changed.

Ctrl-break Character

Specifies what happens when you press the following keys:

ATTN key (Ctrl-F1 by default) in a 3270 session

Ctrl-break in a VT or HP session

Options to send to the host are:

Telnet Abort Output

Telnet Break

Telnet Interrupt Process

Send Keep Alive Packets

In some cases, Host Integrator may become aware of Telnet communication problems only after a
significant delay or when it attempts to send data to the host. This can cause problems if you
enter a large amount of data on one screen or if you keep your connection open during periods of
inactivity.

To become aware of connection problems as they occur, you can configure your model to send
Keep Alive packets. Four methods are available:

None - No keep alive packets are sent (default)

Send NOP Packets - Periodically a No Operation (NOP) command is sent to the host. The gateway
and host are not required to respond to these commands, but the TCP/IP stack can detect if there
was a problem delivering the packet.

System - The TCP/IP stack keeps track of the host connection. This method requires less system
resources than Send Timing Mark Packets or Send NOP Packets, but most TCP/IP stacks send Keep
Alive packets infrequently.

Send Timing Mark Packets - Periodically a Timing Mark Command is sent to the host to determine
if the connection is still active. The gateway or host should respond to these commands. If a
response is not received or there is an error sending the packet, it will shut down the connection.
To view the average amount of time has waited for a response to a Timing Mark Command in the
Design Tool, open the View Settings dialog box and select the Telnet Average Keep Alive Roundtrip
setting.

Keep Alive Timeout

The Keep Alive Timeout is the interval between the keep alive requests sent by the Design Tool.
The range of values is 1-9999 seconds, and the default is 600 seconds.

Local Echo

• •

•

•

•

•

•

• •

•

•

•

•

• •

• •

4.4.2 Customizing the Terminal

- 87/141 -

Controls how the Design Tool responds to remote echo from a Telnet host: - Automatic - (Default)
Attempts to negotiate remote echo, but does what the host commands. - Yes - Negotiates local
echo with the host, but always echoes. - No - Negotiates remote echo with the host, but does not
echo.

VT Control Functions
Control functions cause Verastream to perform certain actions, such as move the text cursor, add a line
of text, assign character attributes, and change character sets. Typically, the host application sends
control functions to Verastream to perform the desired actions. There are three symbols used in this
section that describe a sequence:

Control Function Notation

The following notation is used throughout this section:

Most control functions have a mnemonic identifier. You will never need to enter the mnemonic; it’s
simply a convenient word to help you remember the name of the control function. For example,
DECCOLM is the Digital mnemonic for setting the number of display columns.

Control functions are case sensitive, and must be typed exactly as shown.

Where appropriate, a slash is used through a zero (Ø) to distinguish it from the uppercase letter O.

Note the difference between a lowercase L (l) and the number 1 (1). References are occasionally
given to a character’s decimal value in the character set charts. For example, the space character is
ASCII decimal 32. Control characters are always in the same positions in the charts, and can be
located uniquely by their decimal value; the word “ASCII” is omitted.

This topic shows control functions in their 8-bit format. You can always use the 7-bit equivalent
escape sequence to represent the 8-bit control, as shown in the Recognized C0 Control Characters
Table.

Parameters you supply for a sequence are enclosed in angle brackets. For example, when using the
CSI<n>C control function, replace <n> with the number of spaces you want the cursor to move. If
<n> is omitted, the default is used. For most sequences, the default is 1 (when there is not a

corresponding Ø sequence).

Symbol Description

ESC Stands for the Escape character, and begins an escape sequence

CSI Stands for the Control Sequence Introduction character. When Verastream
receives this character, it recognizes the string that follows as a control sequence

DCS Stands for the Device Control String character, and begins a device control
sequence

•

•

•

•

•

•

4.4.2 Customizing the Terminal

- 88/141 -

Numeric parameters are represented by ASCII strings. For example, in the sequence CSI10;13H the
numbers are the strings 10 and 13, not the decimal values 10 (LF character) and 13 (CR character).
Numeric parameters are constrained to the range 0–9999, inclusive. Any numeric parameter with a
value greater than 9999 is interpreted as 9999. The plus sign (ASCII decimal 43) and the minus sign
(ASCII decimal 45) are not within the range of legal control characters. Therefore, signed numbers,
for example “+10” or “-12,” cause a control sequence or a device control string to be rejected. Do not
include signs with numeric parameters.

Single-Character Control Functions

A single-character control function is made up of one control character (in contrast to multiple-
character control functions). There are two sets of single-character control functions available on VT200,
VT300, and VT400 terminals:

C0 control characters have decimal values 0–31. Verastream supports only the C0 characters
shown in the Recognized C0 (7-Bit) Control Characters Table. Each C0 character is encoded in 7
data bits, with the high-order bit always 0. C0 codes, therefore, can be used in both 7-bit and 8-bit
operating environments. LF and CR, for example, are single-character C0 control functions.

C1 control characters have decimal values 128–159. Verastream supports only the C1 characters
shown in the Recognized C1 (8-Bit) Control Characters Table. Each C1 character is encoded in 8
data bits, with the high-order bit always 1. C1 characters provide a few more functions than C0
characters, but can only be used directly in an 8-bit operating environment. DCS, for example, is a
single-character C1 control function.

In 7-bit operating environments, C1 characters must be converted to a two-character escape sequence
equivalent.

Recognized C0 (7-Bit) Control Characters Table

The following table lists the C0 control characters that Verastream recognizes. C0 controls can be used
in both 7-bit and 8-bit environments. To represent C0 controls in a Verastream macro, use the Chr$(<n>)
syntax, where <n> is the decimal value of the C0 control. See the “Decimal” column in the following
table:

•

• •

• •

Name Character Octal Keystroke Action

Null NUL 0 ^@ Ignored when received

Enquiry ENQ 5 ^E Transmits the answerback
message

Bell BEL 7 ^G Sounds a bell

4.4.2 Customizing the Terminal

- 89/141 -

Name Character Octal Keystroke Action

Backspace BS 10 ^H Moves cursor left one
position on the current
line

Horizontal
tab

HT 11 ^I Moves cursor to the next
tab stop, or to the right
margin.

Linefeed LF 12 ^J Causes a linefeed or new
line operation.

Vertical tab VT 13 ^K Same as linefeed

Form feed FF 14 ^L Same as linefeed

Carriage
return

CR 15 ^M Moves the cursor to the
left margin of the current
line

Shift out
(locking shift
1)

SO 16 ^N Maps the G1 character set
into GL. G1 is designated
by using a Select
Character Set (SCS)
sequence.

Shift in
(locking shift
0)

SI 17 ^O Maps the G0 character set
into GL. G0 is designated
by using a Select
Character Set (SCS)
sequence.

Device
control 1
(XON)

DC1 21 ^Q Continues sending
characters when transmit
is set to Xon/Xoff.

Device
control 3
(XOFF)

DC3 23 ^S Stops sending characters
when transmit is set to
Xon/Xoff.

Cancel CAN 30 ^X Cancels the sequence
when received during an
escape or control
sequence.

4.4.2 Customizing the Terminal

- 90/141 -

Recognized C1 (8-Bit) Control Characters

In 8-bit environments, C1 controls can be sent directly. In a 7-bit environment, you can send an 8-bit C1
control character by converting it to an equivalent 7-bit escape sequence. The 8-bit controls are single
character codes (such as CSI), whereas their 7-bit equivalents are two-character sequences (such as
ESC[).

To form an equivalent 7-bit escape sequence from an 8-bit control character:

Subtract the hexadecimal value 40 from the C1 control code’s value.

Precede the result with the ESC character.

For example, the IND character (decimal 132) has a hexadecimal value of 84. To convert IND to a 7-bit
equivalent, first subtract hexadecimal 40: 84 hex - 40 hex = 44 hex. Hexadecimal 44 is the letter D.
Therefore, to represent the IND character in a 7-bit environment, you would use ESCD.

These are the C1 control characters that Verastream recognizes:

Name Character Octal Keystroke Action

Substitute SUB 32 ^Z Same as cancel;displays a
backwards question mark.

Escape ESC 33 ^[Introduces an escape
sequence and cancels any
escape sequence or
control sequence in
progress.

Delete DEL 177 (none) Ignored when received.

1.

2.

4.4.2 Customizing the Terminal

- 91/141 -

Multiple-Character Control Functions

The C0 and C1 codes listed in the Recognized C0 (7-Bit) Control Charactersand Recognized C1 (8-Bit)
Control Characters tables are single-character control functions, performing simple functions.

Multiple-character control functions, in contrast, can perform many more functions than the C0 and C1
controls, and are formed by a sequence of characters. There are three types of multiple-character
control functions, introduced by the following single-character C0 and C1 controls:

Escape sequences - introduced by the ESC character

Control sequences - introduced by the CSI character

Device control strings - introduced by the DCS character

Multiple-character control functions include both control characters and normal ASCII text, such as
letters, numbers, and punctuation. For example, the multiple character device control string DCSØ!
u%5ST assigns a user-preferred supplemental character set.

Escape Sequences

An escape sequence begins with the C0 character ESC (decimal 27). To enter the ESC character in
the Design Tool, press the ESC key. After receiving an ESC character, Verastream interprets the
next characters as part of the sequence.

•

•

•

• •

4.4.2 Customizing the Terminal

- 92/141 -

Control Sequences

A control sequence begins with the C1 control character CSI (decimal 155). To enter the CSI
character in the Design Tool, press the ESC key plus the [key.

Control sequences usually include variable parameters. The format is:

CSI P...P I...I F

P...P - Zero or more parameters. You can have up to 16 parameters per sequence, using a
semicolon (;) to separate each one.

I...I - Zero or more intermediate characters.

F - The final character indicating the end of the control sequence.

For example, the following control sequence sets the scrolling region, where the top margin is at
line 7 and the bottom margin is at line 18:

CSI7;18r

In this example, 7 and 18 are the parameters and r is the final character. This sequence does not
have any intermediate characters.

Device Control Strings

A device control string begins with the C1 control character DCS (decimal 144). To enter the CSI
character in the Design Tool, press the ESC key plus the P key. Device control strings always
include a data string. The format is:

DCS P...P I...I F <data string> ST

P...P - Zero or more parameters. You can have up to 16 parameters per sequence, using a
semicolon (;) to separate each one.

I...I - Zero or more intermediate characters.

F - The final character indicating the end of the device control string.

<data string> - A data string of zero or more characters. Use a semicolon to separate individual
strings. The particular range of characters included in a data string is determined by the individual
device control string. Any character except ST (decimal 156) can be included in a data string.

ST - The string terminator. Type Chr$(27)& "Ë for 7-bit mode, or Chr$(156) for the 8-bit equivalent.
(You can also press e-\ in the terminal window.)

APC, OSC, and PM

The application program command (APC), operating system command (OSC), and privacy
message (PM) are also C1 controls. However, VT terminals—and Verastream—ignore them. The
controls have the same format as device control strings and end with an ST. When Verastream
receives an APC, OSC, or PM introducer, it discards all following characters until receiving a string
terminator (so the whole sequence is discarded).

Interrupting Control Sequences

• •

• •

• •

• •

4.4.2 Customizing the Terminal

- 93/141 -

You can use the following C0 control characters to interrupt a control function or recover from an
error:

ESC Cancels a sequence in progress, and begins a new sequence.

CAN Cancels a sequence in progress. Verastream interprets the characters that follow the CAN
character as usual.

SUB Same as CAN, except displays a backwards question mark.

Using Nonprintable Characters

Some host application models require you to use nonprintable characters within strings. For example,
they may be required when waiting for cursor positioning sequences sent from a VT or HP host using
the Host Communication string event WaitForCommString, or sending control sequences via the
TransmitANSI command. To represent nonprintable control characters when defining your model in
Host Integrator dialog boxes, use the standard C programming convention of encoding each character
as a \nnn sequence, where nnn is the octal numeric value of the ASCII character, or use one of the \x
sequences that have been defined for the more common control characters. For example, the escape
character (0x1B), which prefixes VT cursor positioning sequences, is encoded as \033 ; carriage returns
can be encoded using \r .

When a model file is read by Host Integrator, the \nnn sequences are parsed into their literal
nonprintable character equivalents. Because backslashes () are interpreted as the beginning of a
nonprintable character sequence, Host Integrator represents literal backslashes in strings with two
backslashes. For example, if you want to wait for the display string "Enter a backslash () to continue" in
an operation, what you will see in the Operation Edit dialog box for WaitForDisplayString is "Enter a
backslash (\) to continue". If you modify a model file in XML format or the model file itself, you must
follow this syntax to embed literal backslashes within string arguments.

Alphabetic Sequence Equivalent Octal Also Known As

\a \007 Control-G (BEL) Bell

\b \010 Control-H (BS) Backspace

\t \011 Control-I (TAB) Horizontal tab

\n \012 Control-J (LF) Linefeed

\v \013 Control-K (VT) Vertical tab

\f \014 Control-L (FF) Formfeed

4.4.2 Customizing the Terminal

- 94/141 -

Default VT Keyboard Mapping
To find a VT keystroke's default mapping, click the key and click the Default button and note the
corresponding Action in the lower half of the dialog box. Click Cancel if you do not want to revert the
key's mapping to its default value.

VT Screen Setup

These settings reflect the current terminal state, which can be changed by the host.

Display columns

This setting specifies the number of columns displayed in the Terminal window.

Display columns

This box sets the number of lines on the display, not including the status line. The maximum
number of rows you can enter depends on the display resolution.

When you change the number of rows, characters are scaled vertically to fit the desired number
of rows in the Terminal window. The display is erased before the new setting takes effect.

Status Line Type

The VT status line at the bottom of the Terminal window is a one-line display that shows
information about the current session. When the Status line is set to Indicator it shows the current
row and column of the text cursor.

When the Status line is set to Host Writable, host applications can display messages on it. The
control function DECSASD selects whether the Terminal window or the status line is the active
area for displaying text.

Interpret controls

The VT terminal character set includes 65 control characters with decimal values 0-31 and
127-159. This option determines whether Host Integrator should interpret or display control
characters.

Customizing the HP Terminal
You can control various aspects of the Design Tool's behavior as an HP terminal. First, configure an HP
session and then configure any of the options available from the Settings menu to customize your HP
terminal.

See Configuring Sessions for information on how to configure the HP terminal.

Alphabetic Sequence Equivalent Octal Also Known As

\r \015 Control-M (CR) Carriage return

• •

• •

• •

• •

4.4.2 Customizing the Terminal

- 95/141 -

Configuring HP Emulation Options

Configure HP Keyboard Options

A quick way to customize the terminal is to create a model using a pre-configured settings file provided
with Host Integrator. The settings file has defaults appropriate for the terminal session you are
modeling.

Configuring HP Emulation Options
These settings reflect the current terminal state, which can be changed by the host. The associated
default setting, saved with the model, is HP Field Separator Default.

•

•

Emulation
Options

Description

Field
Separator

When the Host Integrator is transmitting in block, page, and format modes, it
sends a field separator character after each field of the formatted screen except
the last one. The value selected here specifies which ASCII character is sent. The
values are ASCII decimal 0-127. The default is US (ASCII decimal 31).

Block
Terminator

Under certain conditions, the Host Integrator transmits a block terminator
character at the end of each block of data transmitted. The value selected here
specifies which ASCII character is sent to indicate that the end of the block has
been reached. The values are ASCII decimal 0-127. The default is RS (ASCII
decimal 30).

Return
Definition

Type a character in these boxes to be generated whenever Return is pressed. If
the second character is a space, only the first character is generated. The values
are ASCII decimal 0-127. The default is CR (ASCII decimal 13).

Host
Prompt

An HP 3000 sends a DC1 character to indicate that it is ready to accept a line or
block of characters. This character is sent immediately after the MPE colon
prompt is sent. This list allows you to change which character is expected. Most
hosts either use the DC1 (^Q) character or no prompt (which shows up simply
as a space). Select the appropriate host prompt from this list (turn on DISPLAY
FUNCTIONS to see the control codes sent by the host before changing this
value). The values are ASCII decimal 0-127. The default is D1 (ASCII decimal 17)

4.4.2 Customizing the Terminal

- 96/141 -

Emulation
Options

Description

Start
Column

For every line in display memory, the Host Integrator attempts to remember
the leftmost column that was entered from the keyboard, as opposed to that
received from datacomm. This way, the Host Integrator can distinguish the host
prompt portion of each line from the user-entered portion. This information is
used when you enable LINE MODIFY or MODIFY ALL to determine the leftmost
column that should be transmitted to the host when you press Enter or Return.
Under some circumstances, it is impossible for the Host Integrator to tell which
column was the first user-keyed column; when that happens, it uses the value
you enter in this box to determine the leftmost column to be transmitted. When
Display Columns are set to 80, enter a value from 0 to 79. When you're in 132-
column mode, enter a value from 0 to 131. The values are 0-131. The default is
0.

Host
Character
Set

The available host character sets for HP terminals are HP Roman 8 and HP
Roman 9. The default is HP Roman 8.

Online
(Remote
Mode)

Specifies whether Host Integrator transmits each number, letter, or special
character typed at the keyboard to the host. As characters are received from
the host, Host Integrator displays them on your screen.

Inhibit EOL
Wrap

When cleared, the Host Integrator automatically returns the cursor to the left
margin in the next line when the cursor reaches either the right margin or the
right screen edge. When selected, the cursor is not automatically advanced
when you reach the right margin. As you type additional characters, each one
overwrites the character at the right margin until you explicitly move the cursor
by pressing Return or using an arrow key.

Enq/Ack Some HP 3000 and HP 1000 computers use a form of handshaking called Enq/
Ack (Enquire/Acknowledge) to prevent the terminal (or in this case, the Host
Integrator) from falling too far behind the host system and losing data. With
Enq/Ack pacing, the host system sends 80 characters followed by an ASCII Enq
character and stops transmitting. When the Host Integrator has processed all
of the characters preceding the Enq, it sends an ASCII Ack character, which tells
the host it is ready for more data. "Classic" HP 3000 architecture uses this form
of pacing. MPE\iX systems do not; the Enq/Ack setting is disregarded in this
environment.

4.4.2 Customizing the Terminal

- 97/141 -

Emulation
Options

Description

Use Host
Prompt

Clear this check box if you want the Host Integrator to ignore the host prompt.
Clearing the Use host prompt check box has the same effect as selecting the
Inhibit Handshake and Inhibit DC2 check boxes. Ignoring the host prompt
forces the Design Tool to behave as though both inhibits are on, thus
preventing handshaking. Over an X.25 network, this prevents communications
problems caused by applications that use handshaking. When the Use host
prompt check box is cleared, the Design Tool always responds to a primary
status request from the host that both Inhibit handshake and Inhibit DC2 are
enabled. This can affect a host application that explicitly changes one of these
inhibits.

Inhibit
Handshake

This check box, along with Inhibit DC2 and some other factors, determines the
type of handshaking that precedes each block transfer of data from the Host
Integrator to the host system. When selected, the DC1 handshake for block
transfers is inhibited.

Transmit
Functions

Most keyboard keys have an associated ASCII character. Several keys perform
functions for which there is no character defined; for example, Home and
PgUp. Certain host software programs, such as HP Slate, need to be informed
when you press one of these non-ASCII keys. Selecting this option signals the
Host Integrator to inform the host system whenever you press one of these
keys. When this check box is selected and the Design Tool is operating in
character/remote mode, each time you press one of those keys the associated
escape sequence is transmitted to the host. Most applications that require this
feature automatically send the escape sequences to enable and disable the
feature, so you probably will never need to enable it manually.

SPOW Ordinarily, the Spacebar overwrites and erases existing characters. When the
SPOW (SPace OverWrite) check box is selected, spaces entered from the
keyboard (not spaces echoed from the host), move the cursor over existing
characters, but do not overwrite them with spaces: the SPOW latch is turned on
by a carriage return and off by a linefeed, tab, or home up.

4.4.2 Customizing the Terminal

- 98/141 -

Configure HP Keyboard Options
To find a HP keystroke's default mapping, click the key and click the Default button and note the
corresponding Action in the lower half of the dialog box. Click Cancel if you do not want to revert the
key's mapping to its default value.

HP Terminal Function Key Configuration

The Function Keys tab lets you select which set of key labels are displayed along the bottom of your
screen, and lets you customize eight user keys. A user key definition consists of the following:

A 16-character label (eight characters per line)

A string of up to 80 characters that is produced when the key is pressed

An attribute determining how the Design Tool processes the string when the key is pressed

To reconfigure a function key:

Select the key to configure by clicking it with the mouse or by pressing the key on the keyboard.

Enter a key string of up to 80 characters to be processed when you press the function key in the Key
string box.

These characters may be handled as if they were entered into the keyboard, or to specify Host
Integrator commands. Use the Home, End, arrow keys, or the mouse, to quickly edit a long string. To
delete characters, use Backspace or Delete.

To include escape sequences and ASCII control codes in the user key string, select Insert special
characters. If you're using the Tab key to tab through the dialog box fields, you must clear the Insert
special characters check box; otherwise you'll insert the ASCII tab character each time you press the
Tab key.

The following table shows some examples of keys and key combinations that create certain escape
sequences (shown by the two-letter mnemonic that appears on your screen):

Emulation
Options

Description

Block
Transfer
Unit

When operating in block mode, a block of one or more characters is
transmitted when you press Enter or when the host requests a block transfer
from terminal memory. This option determines how much data Host Integrator
transmits on each block transfer. When set to Line, data is transmitted one line
at a time, or one field at a time in format mode. When set to Page, data is
transmitted one page at a time.

•

•

•

1. 1.

2. 2.

4.4.2 Customizing the Terminal

- 99/141 -

To remove a special character, you must first clear the Insert special characters box.

In the two lines provided in the Label box, type up to eight characters per line for the user key label.
Use spaces to position and center text in the label. You can also use the editing keys (for example, Ins
and Del).

Assign an attribute to the user key in the Attribute box

Normal — The key string is treated exactly as if it had been typed from the keyboard; a carriage
return is not automatically transmitted.

If the Host Integrator is in local mode, the string displays on the screen and any embedded escape
sequences are executed locally. In remote mode with local echo off, the string is transmitted to the
host. It executes and displays only if the host system echoes. For example, use this attribute to store
commands that have changing parameters (like the phone number needed to dial different
modems).

Local — The key string is executed locally, and not transmitted to the host. For example, you could
assign a user key to home the cursor and clear the display.

Transmit — In remote mode, the Host Integrator sends the key string to the host after completing a
block transfer handshake, automatically transmitting a carriage return. For example, use this
attribute to store commonly used commands (such as program run commands) in a user key. In local
mode, pressing a user key with this attribute has no effect.

If you don't want the Host Integrator to display the function keys and labels along the bottom of the
screen, clear the Show function keys check box.

Press this... To include this sequence

Enter CR

Tab HT

Backspace BS

Esc EC

Ctrl+Q D1

Ctrl+S D3

Ctrl+E EQ

Ctrl+X CN

Note

1. 1.

2. 2.

3. 3.

4.4.2 Customizing the Terminal

- 100/141 -

Advanced HP Telnet

See Advanced VT or HP Telnet in the Customizing VT section.

Port Number

Select one of the following depending on which transport type you selected in the Session Setup or New
Model dialog box:

Telnet port

Specifies the host port or socket number that the Telnet session should use. You can enter any
number between 0 and 65,535 in this field. You can configure Port in either the Session Setup or
View Settings dialog boxes.The default port number for Telnet is 23.

NS/VT portion

Specifies the host port or socket number that the NS/VT session should use. You can enter any
number between 0 and 65,535 in this field. You can configure Port in either the Session Setup or
View Settings dialog boxes. The default port number for NS/VT is 1570.

!!! note NS/VT is a proprietary HP protocol that connects to HP3000 hosts only.

Identifying Commands
A command can be a host keystroke, a Design Tool command, or any combination of these.

Creating a Custom Code Page
You can create a custom code page for 3270 and 5250 models by modifying any of the sample code
page files provided with Host Integrator. By default, these examples are located in <VHI folder>\codepage
folder for the Design Tool.

The basic steps for creating and implementing a custom code page are:

Create a text file that includes the customization. The easiest way to create this file is to open an
appropriate code page sample and make a modification.

Save the modified file as custom.codepage in the same folder as the code page samples for the Design
Tool. For a server version, add custom.code page in a codepage directory beneath the server directory.

After saving custom.codepage, restart the Host Integrator server or Design Tool.

Editing a Code Page

A code page is a text file that includes character mappings or property values that differ from the
default set (US English).

• •

• •

1.

2.

3.

4.4.2 Customizing the Terminal

- 101/141 -

The property values at the top include the character set ID, the IBM code page, and, in the case of a
5250 model, the keyboard type. Additional information for specifying the Windows font when displaying
international characters in the Design Tool can be included. The CanadianFrench.codepage.sample is
used in the example below.

Example

If, for example, you want to create a custom code page that has Canadian French settings except for the
keyboard type, you could change the keyboard type from CAI to USB and then save it as
custom.codepage.

BMAS400Keyboard=USB // AS/400 Keyboard type (custom)

The lower portion of the code page sample is a series of character mappings. A character mapping
consists of 3 values on a single line, separated by spaces or commas:

Host (EBCDIC) value, prefixed with H. They can be specified as decimal or hexadecimal numbers.

Windows single-byte value used to display a given character in the Design Tool, prefixed with W.
They can be specified as character literals, decimal values, or hexadecimal values.

6 bit Unicode character, prefixed with U. They can be specified as character literals when they are 8
bits or less, decimal, or hexadecimal values.

In the samples, mappings that are the same as the US English default are commented out with // at the
beginning of the line. For example, the French.codepage.sample has H44 mapped to W '@' and U '@' for
the 'commercial at' sign and is not commented out. (In US English, H44 is mapped to lowercase a with a
grave accent sign.) You could create a custom code page based on the French code page, with a
modification that returns H44 to the US English default.

//===
// VHI Custom 3270/5250 character translation table sample file.
// IBM EBCDIC codepage (CanadianFrench)
//
// Note: To enable this national character set for 3270 and 5250 sessions,
// copy and rename this file to "custom.codepage"
//
// Copyright...... Copyright (c) 2024 Rocket Software, Inc. or its
affiliates.
// All Rights Reserved.
//==
IBMCCSID=697 // IBM Character set ID
BMCodePage=37 // IBM codepage
IBMAS400Keyboard=CAI // AS/400 Keyboard type
WindowsFontCharSet=0 // (ANSI)

•

•

•

4.4.2 Customizing the Terminal

- 102/141 -

Using the Custom Code Page Log File

After creating and saving the code page and then restarting the Host Integrator server or Design Tool,
look at the log file for the code page: <Host Integrator install folder>\codepage\codepage.log .

When the code page is deployed successfully, the log looks like this:

When a code page has errors, the log file includes warnings such as the ones shown below:

Custom codepage logfile opened: Thu Jun 22 08:17:18 2006

Info Duplicate character mapping: We8 ==> U0e48
Info Duplicate character mapping: We9 ==> U0e49
Info Duplicate character mapping: Wea ==> U0e4a
Info Duplicate character mapping: Web ==> U0e4b
Info Duplicate character mapping: Wec ==> U0e4c
Info === Read 221 Lines of text
Info === Found 99 host character mappings
Info +Added Mapping: H41 <==> Wa0
…
…
Info === Found 94 unicode character mappings
Info +Added Mapping: : W1d <==> U00a2
Info +Added Mapping: : W1e <==> U00a6

Custom codepage logfile closed: Thu Jun 22 08:17:18 2006

4.4.2 Customizing the Terminal

- 103/141 -

4.4.3 Mapping the Keyboard

Mapping the Keyboard
You can customize your keyboard to associate keystrokes with Design Tool commands or terminal
keystrokes. This process is known as keyboard mapping.

A keystroke can be:

A single key, such as K, F1, or Num Lock

A combination of keys that you press at the same time, such as Ctrl+F2 or Alt+Shift+M

When you use more than one key in a keystroke, all keys preceding the final key must be modifier keys
—Alt, Ctrl, or Shift. You can create keystrokes with a single modifier key (Ctrl+F7) or with multiple
modifier keys (Shift+Ctrl+F7).

The command that you map to a keystroke can be:

A terminal key, such as Attention or PF1

A Design Tool command, such as .aboutDlg or .Connect

Any combination of the above—you can build the Command string to include multiple terminal
keys, and commands.

Drag-and-Drop Keymap Options

The following are some shortcuts you can use in the Keyboard Setup dialog box:

Click a PC keystroke and then, holding down the left mouse button, drag it to the terminal
keyboard. Already mapped keys become small cyan rectangles; unmapped keys become a
rectangle, but they don't change color. When you move this rectangle over a key on the terminal
keyboard, a black outline appears around this key (indicating correct positioning over the key).

Warn Line 11 Unrecognized property "MyProperty"
Warn Line 20 !Host value invalid or out-of-range.
Warn Line 20 !Windows value invalid or out-of-range
Warn Line 20 !Unicode value invalid or out-of-range.
Warn Line 20 !Character mapping ignored "H3F U10000"
Warn Line 22 !Host value invalid or out-of-range.
Warn Line 22 !Windows value invalid or out-of-range
Warn Line 22 !Unicode value invalid or out-of-range.
Warn Line 22 !Character mapping ignored "HH WW UU"

•

•

•

•

•

• •

4.4.3 Mapping the Keyboard

- 104/141 -

The rectangular mouse cursor either retains its form (indicating that you can map to this key) or
turns into a red circle with a line through it (indicating that you cannot map to this key).

The same process works in reverse. Select a terminal keystroke, and then drag it to the PC
keyboard.

To remove mapping from a key, click the key, and then drag it off the Keyboard Setup dialog box.
When you drag the key off the edge of the dialog box, the image of the key turns into a trash can;
you can then release the left mouse button and the mapping is cleared.

Changing the PC or Terminal Keyboard
The Keyboard Type dialog box lets you specify which PC and Terminal keyboard are shown in the
Keyboard Setup dialog box. On the Settings menu, click Keyboard to open the Keyboard Setup dialog
box, and then click Keyboards to open the Keyboard Type dialog box. The Keyboard Type dialog box
contains two list boxes:

PC - Click the down arrow to see the available PC keyboards.

Terminal - Click the down arrow to see the available terminal keyboards.

Other options that affect keyboard mapping are available in the View Settings dialog box (available from
the Settings menu).

Identifying a Keystroke

To identify a keystroke:

Click any modifier keys (Alt, Ctrl, or Shift) that you want to use in the keystroke. This step is optional.
You can create keystrokes with no modifier keys (such as F7), with a single modifier key (Ctrl+F7), or
with multiple modifier keys (Shift+Ctrl+F7).

Select a primary key.

This can be any key on the PC keyboard--except an unavailable key. Cyan keys are already mapped. To
remap a key, click Remove, and then continue.

If your keyboard keys on your keyboard do not exactly match the PC keyboard keys shown in the
Keyboard Setup dialog box, use your keyboard, instead of the mouse, to select a PC keystroke. That
way, you'll be able to see how your keyboard keys correspond to the keys on the Design Tool's graphical
PC keyboard. Select a key, click an empty spot anywhere under PC Keyboard, and use your keyboard to
press the keys you want. Do not use your mouse to click any keys.

You cannot remap the Windows logo function keys.

• •

• •

•

•

1. 1.

2. 2.

Note

4.4.3 Mapping the Keyboard

- 105/141 -

Removing a Keystroke's Mapping

Select the keystroke on the PC keyboard in the Keyboard Setup dialog box

Click the Remove button.

The key's mapping is cleared (so that pressing the keystroke has no effect in the Design Tool).

Resetting a Keystroke's Mapping

To reset a keystroke to its default setting...

Identify a PC keystroke in the Keyboard Setup dialog box.

Click the Default button.

Don't confuse the Default button with the Defaults button (which deletes all keyboard customizations).

This procedure only works for PC keystrokes mapped to an action other than the default action for the
keystroke.

Restoring the Default Keyboard Mapping

To restore the default keyboard mapping, click Defaults in the Keyboard Setup dialog box.

All keyboard customizations are removed. For information on the default keyboard mapping for VT and
HP terminals, click a mapped cyan/teal PC key and note the corresponding Action in the lower half of
the Keyboard Mapping dialog box.

Determining Keyboard Mapping

Shading, color, and key appearance are used in the Keyboard Setup dialog box to show how your
keyboard is mapped. Cyan keys are mapped, by default, but their mappings can be changed.

Keys not appearing in cyan are not mapped. (Letter and number keys are not considered mapped
because it is unlikely you would want to redefine the mappings for these keys.)

If you want to see how a key on the PC is mapped, click the key to select it; the key is selected. If this PC
key is mapped to a terminal key, the corresponding key on the terminal keyboard, below, is also
selected. For example, click the F1 key on the PC keyboard. It changes color, as does the F1 key (in 5250
sessions) or the PF1 key (in 3270 sessions) on the terminal keyboard. Click F1 on the PC keyboard again
to clear the key.

1.

2.

1.

2.

4.4.3 Mapping the Keyboard

- 106/141 -

Num Lock key status affects the mapping: If you click the Num Lock key while the Keyboard Setup
dialog box is open, you must exit and return to the dialog box before that change is reflected in the
displayed keyboard mapping.

Some keys are mapped to Design Tool commands. For example, click the Caps Lock key on the PC
keyboard. The terminal keyboard is replaced by a set of fields.

Caps Lock is mapped to the Design Tool command .Toggle(rc_CapsLockState) , which turns capital letters
on or off.

Click Caps Lock again to clear it.

If you click a modifier key (Alt, Ctrl, or Shift) on the PC keyboard, the color pattern on the remaining keys
changes. For example, try clicking Alt. The keys that turn cyan are mapped to Alt. For example, in 5250
sessions, the F1 and D keys become cyan when you click Alt. This means that Alt+F1 and Alt+D are
mapped in the Design Tool's default keyboard mapping.

Keys that appear dimmed when you click Alt, Ctrl, or Shift are currently mapped (in combination with
the selected modifier key) and cannot be changed. Typically, these are keystrokes that are defined by
Windows. For example:

Linking a Keystroke to a Command

Once you have identified a PC keystroke and one or more commands to map it to, click the Map button.

Mapping a Keystroke
There are three things you need to do in the Keyboard Setup dialog box to map a keystroke:

Identify the keystroke

Identify one or more commands

Link the keystroke to the commands

With the Design Tool's Keyboard Setup dialog box, you can identify either the keystroke or the action
first, but the linking process must be the final step.

Keyboard settings can be saved to a settings file (.dtool) with other configuration information.

Note

Keystroke Map to setting

Alt+F4 Close the current window (Windows standard)

Ctrl+Esc Display the Windows task list (Windows standard)

1.

2.

3.

4.4.3 Mapping the Keyboard

- 107/141 -

Mapping a Keystroke
There are three things you need to do in the Keyboard Setup dialog box to map a keystroke:

Identify a keystroke

Identify one or more commands

Link the keystroke to the command

With the Design Tool's Keyboard Setup dialog box, you can identify either the keystroke or the action
first, but the linking process must be the final step. Keyboard settings can be saved to a settings file
(.dtool) with other configuration information.

To identify a keystroke

Click any modifier keys (Alt, Ctrl, or Shift) that you want to use in the keystroke.

This step is optional. You can create keystrokes with no modifier keys (such as F7), with a single
modifier key (Ctrl+F7), or with multiple modifier keys (Shift+Ctrl+F7).

Select a primary key.

This can be any key on the PC keyboard--except an unavailable key. Cyan keys are already mapped. To
remap a key, click Remove, and then continue.

If your keyboard keys on your keyboard do not exactly match the PC keyboard keys shown in the
Keyboard Setup dialog box, use your keyboard, instead of the mouse, to select a PC keystroke. That
way, you'll be able to see how your keyboard keys correspond to the keys on the Design Tool's
graphical PC keyboard. Select a key, click an empty spot anywhere under PC Keyboard, and use your
keyboard to press the keys you want. Do not use your mouse to click any keys.

You cannot remap the Windows logo function keys.

Removing a Keystroke's Mapping

Select the keystroke on the PC keyboard in the Keyboard Setup dialog box

Click the Remove button.

The key's mapping is cleared (so that pressing the keystroke has no effect in the Design Tool).

Resetting a Keystroke's Mapping
To reset a keystroke to its default setting:

Identify the keystroke in the Keyboard Setup dialog box.

1.

2.

3.

1. 1.

2. 2.

Note

1.

2.

1.

4.4.3 Mapping the Keyboard

- 108/141 -

Click the Default button.

Don't confuse the Default button with the Defaults button (which deletes all keyboard
customizations).

This procedure only works for PC keystrokes mapped to an action other than the default action for the
keystroke.

Restoring the Default Keyboard Mapping
To restore the default keyboard mapping, click Defaults in the Keyboard Setup dialog box.

All keyboard customizations are removed. For information on the default keyboard mapping for VT and
HP terminals, click a mapped cyan/teal PC key and note the corresponding Action in the lower half of
the Keyboard Mapping dialog box.

Determining Keyboard Mapping
Shading, color, and key appearance are used in the Keyboard Setup dialog box to show how your
keyboard is mapped. Cyan keys are mapped, by default, but their mappings can be changed.

Keys not appearing in cyan are not mapped. (Letter and number keys are not considered mapped
because it is unlikely you would want to redefine the mappings for these keys.)

If you want to see how a key on the PC is mapped, click the key to select it; the key is selected. If this PC
key is mapped to a terminal key, the corresponding key on the terminal keyboard, below, is also
selected. For example, click the F1 key on the PC keyboard. It changes color, as does the F1 key (in 5250
sessions) or the PF1 key (in 3270 sessions) on the terminal keyboard. Click F1 on the PC keyboard again
to clear the key.

Num Lock key status affects the mapping: If you click the Num Lock key while the Keyboard Setup
dialog box is open, you must exit and return to the dialog box before that change is reflected in the
displayed keyboard mapping.

Some keys are mapped to Design Tool commands. For example, click the Caps Lock key on the PC
keyboard. The terminal keyboard is replaced by a set of fields.

Caps Lock is mapped to the Design Tool command .Toggle(rc_CapsLockState) , which turns capital letters
on or off.

Click Caps Lock again to clear it.

2.

Tip

Note

4.4.3 Mapping the Keyboard

- 109/141 -

If you click a modifier key (Alt, Ctrl, or Shift) on the PC keyboard, the color pattern on the remaining keys
changes. For example, try clicking Alt. The keys that turn cyan are mapped to Alt. For example, in 5250
sessions, the F1 and D keys become cyan when you click Alt. This means that Alt+F1 and Alt+D are
mapped in the Design Tool's default keyboard mapping.

Keys that appear dimmed when you click Alt, Ctrl, or Shift are currently mapped (in combination with
the selected modifier key) and cannot be changed. Typically, these are keystrokes that are defined by
Windows. For example:

Linking a Keystroke to a Command
Once you have identified a PC keystroke and one or more commands to map it to, click the Map button.

4.4.4 Setting Colors and Fonts

Configuring Colors
The Colors tab in the Display Setup dialog box lets you associate colors with screen attributes in the
Terminal window.

Color settings can be saved to a settings file (.dtool) with other configuration information.

Setting Colors with a Mouse
While the Colors tab is displayed, move your cursor outside of it. The cursor now looks like a pointing
hand.

Place the cursor over text in the Terminal window and click the left button. In the Colors tab, the
Item box shows the attribute of the text you clicked.

Move the cursor back into the dialog box and click a color in the Foreground (text) box. All text with
the attribute shown in the Item box now appears in the new color.

Alternatively, you can click a color first and then, holding down the left mouse button, drag the cursor
off the Colors tab. In this case, the cursor becomes a paint brush.

As you move the paint brush cursor across the Terminal window, the value in the Item box changes
to show the attribute of the text beneath the paint brush.

Keystroke Map to setting

Alt+F4 Close the current window (Windows standard)

Ctrl+Esc Display the Windows task list (Windows standard)

Ctrl+Alt+Del Restart system (DOS standard)

•

•

•

4.4.4 Setting Colors and Fonts

- 110/141 -

When the cursor is over an area whose color the Design Tool cannot change, the paint brush cursor
looks like a paint brush with a slashed circle covering it.

When you release the mouse button on text with an appropriate attribute, the text--and any additional
text that shares this attribute--are set to the specified color.

Click Defaults if you want to reset all colors to their default values. Click Save on the File menu to retain
the new color settings after you exit the Design Tool.

Setting Colors for an Attribute

From the Settings menu, select Display... to open the Display Setup dialog box.

In the Item box, select a value. The Sample Text window shows the current colors for the selected item--
whether or not any part of your current Terminal window actually has the same attribute.

In the Foreground (text) box, select a color. Any text matching the selected attribute immediately
changes color as you move from color to color.

You can return to the Item box and set a color for a different attribute, or click OK to exit the Display
Setup dialog box.

Click Defaults to reset all colors to their default values.

Configuring Display Fonts
Use this dialog box to specify the display font and style in the Design Tool.

Changing the Design Tool's font has no effect on the font used by your printer, the status line, menu
commands, or dialog boxes.

Font

Specifies the display font in the Design Tool session window. You can use any font, including TrueType
fonts. Arial is an example of a TrueType font that is not monospaced, and therefore is not supported by
the Design Tool.

By default, the Design Tool uses the r_ansi font. This provides a 24 x 80 display that accurately emulates
the terminal.

When you resize the Terminal window, the Design Tool chooses a new font size so the correct number
of rows are displayed on the screen. If the Design Tool cannot display the font you have chosen, the
default (r_ansi) is displayed instead.

The available fonts can change as you change the model ID in the Session Setup dialog box, because
not all model IDs support all fonts.

•

1.

2.

3.

4.

4.4.4 Setting Colors and Fonts

- 111/141 -

When you print all or part of a host screen from a terminal session, the font used is the currently
configured display font.

Font Style

Specifies a font style, regular or bold. The Design Tool does not support italicized fonts. The default is
Regular.

Display variable width fonts

Specifies whether proportionally-spaced font types appear in the Fonts box. The default is Yes.

Auto sizing

Specifies that for whichever font or style you select, the Design Tool automatically adjusts the font size
to fit all text in the Terminal window. To change the font size, set this setting to No. By default, Auto Font
Size is enabled.

Fonts Installed by the Host Integrator
The following files are installed automatically by the Host Integrator installation program:

Note

Font Type Description

Dialog.fon The font used in the Design Tool's dialog boxes.

_ansi.ttf The file for the TrueType versions of the r_ansi fonts.

R_ansi.fon The file for the bitmap versions of the r_ansi fonts.

R_apl.ttf The file for the TrueType versions of the r_apl fonts. You can't select this font
from the Fonts tab—it's used to display characters in the Operator
Information area (OIA) only.

R_contr.fon You can't select this font from the Fonts tab—it's used to display control
characters in VT and HP terminal emulation sessions.

R_contr.ttf You can't select this font from the Fonts tab—it's used to display control
characters in VT and HP terminal emulation sessions.

R_ibmasc.fon The r_ibmasc font.

R_ibmhex.fon You can't select this font from the Fonts tab—it's used only when you're in
hexadecimal mode.

4.4.4 Setting Colors and Fonts

- 112/141 -

To use a monospaced (fixed-pitch) font other than Host Integrator's default display font, r_ansi, that
font must already be installed under Windows. If the font you want to use doesn't appear in the Font
box in the Display Setup dialog box, you need to install it using Windows Control Panel. Refer to your
Windows documentation for information on installing new fonts.

4.4.5 Command List Edit
Use the Command List Edit dialog box to create a login, a logout, or a move cursor command list to be
saved in the model file. To view a detailed example of a login and logout command list, see the Pine
model example.

Command lists will be generated if operation generation is on (this is the default).

Configure your login or logout command lists to be automatically executed on a host connect or
disconnect by selecting the Execute login command list and Execute logout command list check
boxes on the General tab of the Preferences Setup dialog box.

Select a command from the Command list and press the F1 key for online help on that command.

Use the Copy button to grab an image of the whole command list, which you can them paste into a
text editor making the entire list visible.

To create a login command list

On the Connection menu, select Session Setup to open the Session Setup dialog box.

In the Session box, select the terminal type from the Type box.

Type the host name or IP address in the Host name or IP address box and click Connect.

On the Model menu, point to Record and click Start Recording. Type your username and password and
advance to the next screen.

On the Model menu, point to Record and click Stop Recording.

On the Stop Recording dialog box, select Save as login command list and click Save to open the
Command List Edit dialog box.

View and edit the commands associated with the login command list that you've just created in the
Commands box and click OK to save it.

Font Type Description

R_ibmsl.fon The font used to display host symbols and status lines.

R_symbo_.fon The file for the symbol fonts.

R_symbol_.ttf The file for the TrueType versions of the symbol fonts.

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

4.4.5 Command List Edit

- 113/141 -

To view and edit the login command list, use the buttons next to the Login (after host connect) box in
the Model Properties dialog box.

To execute your login command list, disconnect and then reconnect to the host, and click the Execute
login command list button on the standard toolbar. Alternatively, you can open the Model Properties
dialog box and click the Execute button.

To create a logout command list

Move to the home entity of the model.

When you're ready to logout of the host, click Start Recording.

Type the command used to logout of the host on the terminal screen.

On the Stop Recording dialog box, select Save as logout command list and click Save to open the
Command List Edit dialog box. By default, the Stop Recording dialog box opens if you are disconnecting
from a host while recording.

View and edit the commands associated with the logout command list that you've just created in the
Commands box and click OK to save it. Delete the .MoveCursor command.

To view or edit the logout command list, use the buttons next to the Logout (before host disconnect)
box in the Model Properties dialog box. Make sure to save your model before exiting.

To execute your logout command list, disconnect and then reconnect to the host, and click the Execute
logout command list button on the standard toolbar. Alternatively, you can open the Model Properties
dialog box and click the Execute button.

Notes:

It is recommended that you create a logout command list on your home entity. If you record a
logout command list from an entity other than the home entity, it may not return the expected
results when run in either the Design Tool or on the server. This happens because the default
behavior of the logout command is to navigate to the home entity and then execute the logout
command list. If you are not on the home entity when recording the logout command list, the
following message will appear:
"Execution of the logout command list will always start at the home entity. Since recording started

at a different entity, we will add a 'Navigate to <name> entity' command to the start of your

command list. At run-time, this may cause unnecessary host navigation. Do you want to continue?"

If you create a model that uses a login command list that goes past at least one entity to reach the
home screen entity, it is not necessary to exit the model using the same sequence. For example, a
login command list may include a sequence to reach the home entity using signon entity "A,"
main menu "B," and home entity "C." The appropriate logout command list should, however,
should proceed directly from home entity "C" to signon entity "A."

8.

9.

1.

2.

3.

4.

5.

6.

7.

• •

• •

4.4.5 Command List Edit

- 114/141 -

To create a move forward or move backward command list

Click the right arrow button and select the terminal key you want to use to move the cursor forward.

Select Tab from the Key list and then configure your tab position settings using the Cursor tab on the
Entity window.

Click OK to save your move forward command list and return to the Advanced Model Properties
dialog box.

Follow the same directions to create a move backward command list.

Build Command
The Build Command dialog box provides the following information about the selected command:

Description - displays a read-only description

Syntax - provides a read-only text description

Parameters - contains the values that determine the characteristics or the behavior of the command

4.5 Importing Model Elements
Elements of an existing model can be imported into other models. Developers can work simultaneously
on the same model, importing the different elements to create a new model. You can also reuse parts of
a model, streamlining your work and letting multiple developers work efficiently.

Settings and properties are not inherited from the source model. You can reconfigure them in the
destination model if you want to keep the existing settings and properties.

Terminology and Best Practices for Importing Models

Copy Objects

Copy Entity

1. 1.

2. 2.

•

•

•

•

•

•

4.5 Importing Model Elements

- 115/141 -

4.5.1 Workflow

Open the destination model in the Design Tool.

The destination model is the model that you are importing to. It is a good idea to always backup your
model before importing model elements.

From the File menu, choose Import Model Elements to open the Import Model Elements dialog box.
You can open either a .modelx file or a .model file .

Browse to the import model. You import from the source model (in the dialog box) to the destination
model, which is open in the Design Tool.

The left pane displays a tree representation of the source model, including all entities, tables, and
variables.

Choose the elements of the model you want to import into the destination model.

Model elements are those items that can be imported and comprise entities, attributes, operations,
recordsets, recordset fields, tables, table columns, procedures, compound procedures, and model
variables. When an operation containing a WaitForMultipleEvents command is imported, the
referenced Host Events are also imported.

Patterns and events cannot be imported separately from their entity.

Preview your selected elements in the Destination pane. This pane is divided into the following
elements.

Insert elements are new elements that are added to the model when the import is complete.

Update elements are elements that are updated after the import is complete.

Referenced elements are elements that are referenced by other elements. If these are not resolved,
either manually or automatically, a temporary replacement version of the element is created. These
replacement elements are marked with a _notImported suffix.

Click OK.

If an element already exists in the destination model, importing it overwrites the current element.

By default, the destination model with all imported model elements is validated using the Host
Integrator Validator.

Resolve any validation errors.

1. 1.

2. 2.

3. 3.

4. 4.

Note

5. 5.

6. 6.

Note

7. 7.

4.5.1 Workflow

- 116/141 -

If you are importing a model that contains an event handler, copy the Java code from the model
source Scripts sub-directory to the corresponding sub-directory in the destination model.

A reference to the event handler is imported along with the parent element.

4.5.2 Terminology and Best Practices for Importing Models
Elements of an existing model can be imported into other models. Developers can work simultaneously
on the same model, importing the different elements to create a new model. You can also reuse parts
of a model, streamlining your work and letting multiple developers work efficiently.

Terminology

Destination model

The destination model is the model that you are importing to and the model which is open in the
Design Tool.

Master model

After the import is complete, the new model that was created by importing elements from the
source model into the destination model is called the master model.

Source model

You import from the source model to the destination model. The source model is selected in the
Model Import dialog box.

Model elements

Model elements are those items that may be imported and comprise entities, attributes,
operations, recordsets, recordset fields, tables, table columns, procedures, compound
procedures, and model variables.

Referenced elements

A referenced element is referenced by another element, but not selected for import. All
referenced elements must be resolved, either manually or automatically, before the new model
can be deployed.

If the option Automatically select referenced elements is selected on the Preferences dialog
box, then _notImported elements do not occur. If this option is cleared, then these replacement
elements must be resolved manually.

8. 8.

• •

• •

• •

• •

• •

Note

4.5.2 Terminology and Best Practices for Importing Models

- 117/141 -

Best Practices

Always backup your model before you begin the import process.

Understand your model.

Elements that are identified as _notImported in the preview pane of the Model Import dialog box
are not problems. It is not unusual to have elements that you do not want to import.

An element, for example an attribute, might reference another element, such as a variable. When
the attribute is imported, but the variable isn't, then the referenced element is missing. The
import function creates a temporary replacement version of the referenced element. These
replacements are marked with the _notImported suffix and inserted into the destination model.

Since all referenced elements must eventually be resolved before a model can be deployed, after
finishing the import, use the Design Tool to modify the attribute you have just imported. Find the
reference to the placeholder variable and change it to refer to a "real" variable in your model.

Create a base model with all the entities up to the home entity. This model should include a model
of lifecycle event handlers.

If all the screens you want to model are known in advance, it is beneficial to include the entities
that will be duplicated across different models in the base model. This prevents a particular entity
from having different names across different models and reduces the size of the model.

Developers should use the base model and extend it to include other model elements. The model
should be given a unique name. For example, <DeveloperInitials> _<BaseModelName> .

Add a prefix to the names of event handlers to make them unique to each model. This ensures
that there are no clashes during the import process.

Code freeze both models during the import merge process.

Test the destination (master) model when the import is complete.

Provide the master model to the developers to continue the task of extending the model.

Frequently Asked Questions

Can I import models with event handlers?

Yes. If you import a model that contains an event handler, a reference to it is imported along with
the parent element. However, you must manually copy the Java code from the model source
Scripts sub-directory to the corresponding sub-directory in the destination model files.

How do I make sure I don't overwrite existing elements during import?

When you select an element that is already in the destination model the element is replaced.
However, you must confirm your decision before the element is overwritten. This option is set on
the Import tab of the Preferences Setup dialog box and is selected by default.

• •

• •

• •

• •

• •

• •

• •

•

•

• •

• •

4.5.2 Terminology and Best Practices for Importing Models

- 118/141 -

Do I have to validate my new master model?

By default, all import models are validated in the Host Integrator Validator. A model must
successfully validate before it can be deployed.

Can I change how sub-items and referenced items are selected in the Model Import pane?

Options that determine how to work with the Import Model Elements dialog box are set on
Settings > Preferences > Import. See Import Preferences for a description of each option, as well
as the default settings.

What do the green and yellow equal signs mean?

All of the element's properties in the source model are the same as those in the destination
model. For example, if an entity exists in both models and all of the entity's sub-items are also
marked with a green equal sign, you do not have to import this element.

However, a yellow equal sign indicates that the element properties are the same, but there are
differences between one or more sub-items of the element.

More information

Creating a model

4.5.3 Copy Objects
You can copy objects you have already created for reuse. Copying patterns, attributes, or recordsets
allows you to quickly create new model objects based on objects that you have already defined within a
given entity.

You can copy patterns, attributes, and recordsets as described below. You can also copy tables and
procedures, and complete entities can be replicated a shown in Copy Entity.

From the drop down list attached to the following buttons, click Create Copy:

 Attribute

 Recordset

 Pattern

 Operation

The copied object has a similar name to the original object with a number appended (for example,
Password_2).

Make the necessary modifications to the new copy.

• •

• •

• •

•

1. 1.

• •

• •

• •

• •

2. 2.

4.5.3 Copy Objects

- 119/141 -

Avoiding Problems
Use these best practices to avoid common problems:

If you copy a pattern that is configured to be a signature pattern for an entity, edit the pattern
characteristics to avoid invalid signatures.

When you copy an entity, you must identify a signature that uniquely identifies the entity. It cannot
have the same signature as the source entity you copied from.

Avoid copying an object that is relative to a pattern, since the relative relationship is usually not the
same for the new object.

Copying or importing operations that act on entity-specific objects may not function as originally
designed, even if each command in the operation is copied successfully.

4.5.4 Copy Entity
You can copy entities you have already created. This is a fast way to build models that contain multiple
occurrences of similar screens.

To Copy an Entity

Click Copy From on the options list next to the Entity button. This option is available when you are on
an undefined screen.

Select the entity to copy.

On the left side of the Copy Entity object dialog box is a list of entities within this model. Entities that
cannot be copied are marked with a red X.

Confirm that this item can be copied as you expect.

The right pane's Snapshot tab includes a snapshot of the selected entity. The Entity tab shows the
name of the source entity and the objects within the entity.

The Copy status column indicates whether the entity can be copied. If an object cannot be copied
(for example, you are trying to copy an attribute from a 132 column entity to an 80 column entity), an
error icon is displayed.

Click Copy.

Edit the resulting entity.

At a minimum, you must identify a signature that uniquely identifies the entity. It cannot have the
same signature as the source entity you copied from.

•

•

•

•

1. 1.

2. 2.

Note

3. 3.

4. 4.

5. 5.

•

4.5.4 Copy Entity

- 120/141 -

Modify any patterns that are defined for the source entity and are not present in the target entity.
They are listed with a red X to the left of the pattern name.

More information

Adding Entities to a Model

4.6 Adding Entities to a Model
An entity is a unique host application screen. After you label your host application screen as an entity,
you must define it using entity definitions and entity properties.

Object names for entities, attributes, operations, recordsets, recordset fields, and, variables are not
case sensitive.

To add an entity to a model:

When the first screen appears after connecting to the host, click the New Entity button in the Entity
window. (All of the other options are unavailable at this point.)

By default, the entity is named Entity_1. To change the name, select it and type a new name in the
Entity box.

Click Apply to save your changes.

Now, add a pattern to the entity. See Adding Patterns.

You can also copy entities as shown in Copy Entity.

4.6.1 Adding Patterns
A pattern is a selected area on an entity that does not contain data that changes from session to
session.

To add a pattern to an entity:

After you've created an entity, use the cursor to select a static section of the host screen to create a
pattern.

Each pattern can have up to 259 characters.

•

•

Note

1. 1.

2. 2.

3. 3.

4. 4.

1. 1.

4.6 Adding Entities to a Model

- 121/141 -

You can choose to auto-generate patterns by clicking the Auto-generate button, but you will still
have to assign properties and error conditions to these patterns on the Pattern tab.

On the Pattern tab, click the New Pattern button. All of the other options on this tab are unavailable
at this point.

By default, the pattern is named Pattern_1. To change the name, select it and type a new name in
the Name box. The Design Tool has now recorded the position, properties, and the signature
parameters of the pattern.

Click Apply to save your changes.

Now, add attributes to identify text fields on the entity as shown in Adding Attributes.

To copy a pattern:
After you have created a pattern, you may need to create another that is similar. You can copy the
pattern and then make the necessary modifications to the copy.

Select the pattern you want to copy.

Click the list next to the New Pattern button and then select Create Copy. A new operation with a
similar name and a number appended to the end is created. For example: Pattern_2_2.

Modify the new pattern so that it is distinguishable from the pattern on which it is based.

If you copy a pattern that is configured to be a signature pattern for an entity, be sure to edit the
pattern characteristics to avoid invalid signatures.

4.6.2 Adding Attributes
An attribute is a selected area on an entity containing data that needs to be accessible via the model
file.

After you've created an entity and added pattern to that entity, you're ready to add an attribute or
attributes.

Tip

2. 2.

3. 3.

4. 4.

5. 5.

1.

2.

3.

Tip

4.6.2 Adding Attributes

- 122/141 -

You can choose to auto-generate attributes by clicking the Auto-generate button, but you will still
have to assign variables, properties, and error conditions to these attributes on the Attribute tab.

To add an attribute to an entity:

Use the cursor to select a text field on the host screen.

On the Attribute tab, click the New Attribute button. All of the other options on this tab will be
unavailable.

By default, the attribute is named Attribute_1. To change the name, select it and type a new name in
the Name box.

The Design Tool records the position and other defining characteristics of the attribute.

You can accept the Design Tool's default properties, or change them on the Attribute tab.

Click Apply to save your changes.

Some entities require that you add recordset information. After adding these elements to an entity, you
can define operations to navigate between entities.

To copy an attribute:
After you create an attribute, you may need to create another that is similar. You can copy the attribute
and then make the necessary modifications to the copy.

Select the attribute you want to copy.

Click the list next to the New Attribute button and select Create Copy. A new attribute with a similar
name and a number appended to the end is created (for example, Password_2).

Modify the new attribute so that it is distinguishable from the attribute on which it is based.

To add colors to an attribute:

From the Settings menu, select Display... to open the Display Setup dialog box.

In the Item box, select a value.

The Sample Text window shows the current colors for the selected item and whether any part of your
current Terminal window actually has the same attribute.

In the Foreground (text) box, select a color.

Any text matching the selected attribute immediately changes color as you move from color to color.

To set a color for a different attribute, return to the Item box.

Tip

1. 1.

2. 2.

3. 3.

4. 4.

1.

2.

3.

1. 1.

2. 2.

3. 3.

4. 4.

4.6.2 Adding Attributes

- 123/141 -

Click OK to exit the Display Setup dialog box.

Click Defaults to reset all colors to their default values.

More information

Customizing the Terminal

4.6.3 Adding Recordsets to an Entity

To add a recordset to an entity:

On the Recordset tab, select a scrollable area on the terminal screen and click the New Recordset
button in the Name box.

By default, the recordset is named Recordset_1. To change the name, select it and type a new name
in the Name box.

Configure your recordset using the Recordset Position, Layout, and Fields tabs.

Click Apply to save your changes.

To copy a recordset:
After you have created a recordset, you may need to create another that is similar. You can copy the
recordset and then make the necessary modifications to the copy.

Select the recordset you want to copy.

Click the list next to the New Recordset button and select Create Copy. A new recordset with a similar
name and a number appended to the end is created (for example, AcctTransData_2 .

Modify the new recordset so that it is distinguishable from the recordset on which it is based.

Testing Recordsets
This is an example of testing a fetch record in the CICSAccts model.

On the File menu, choose Open and select CICSAccts.modelx .

Click Return to connect.

From the Entity list on the Entity window, select NameSearchResults.

Select the Recordset tab and click the Test button in the Name box.

In the Test Recordset dialog box, select Fetch Records from the Action box.

Click the Execute button.

5. 5.

6. 6.

•

1. 1.

2. 2.

3. 3.

4. 4.

1.

2.

3.

1.

2.

3.

4.

5.

6.

4.6.3 Adding Recordsets to an Entity

- 124/141 -

View the results of the data fetch test in the Fetch returned box.

Fetch Records

To test a record fetch:

Open CCSDemo.modelx in the Design Tool.

On the Connection menu, choose Connect to localhost via Telnet.

From the Entity list on the Entity window, select NameSearchScreen.

Select the Recordset tab and click the Test button in the Name box.

In the Test Recordset dialog box, select Fetch Records from the Action box.

To filter out a record or records from within a recordset, click the Edit button to open the Filter String
Edit dialog box.

Click the Execute button.

View the results of the data fetch test in the Fetch returned box.

After executing the first Fetch Records, you must reset the recordset by executing the Set Current
Record Index action.

Inserting a Record

To insert a specific record or multiple records into a recordset:

Confirm that SIDemo is running in the Host Emulator, then open SIDemo.modelx in the Design Tool.

On the Connection menu, click connect to localhost via Telnet.

From the Entity list on the Entity window, select CustomerPurchases.

Click the Recordset tab and select CustomerList from the Name box.

Click the Test button to open the Test Recordset dialog box.

Select Insert Record from the Action box.

In the Insert record box, notice that the Select and Customer fields have been created for this
recordset and are listed in rows.

To insert a record, under the Value column, type B. JONES into the Customer text box.

Click Execute. If the insert is successful, the record contents should appear in the Terminal window.

7.

1.

2.

3.

4.

5.

6.

7.

8.

Note

1.

2.

3.

4.

5.

6.

7.

8.

9.

4.6.3 Adding Recordsets to an Entity

- 125/141 -

After you execute an insert on a recordset, you need to reset the recordset by either navigating away
from it and returning, or executing the home operation on the recordset before executing any other
method on it.

Selecting a Record
There are two possible ways to select a record: by condition or by index. The following procedures use
SIDemo.modelx as an example.

To select a specific record by condition in a recordset:

Confirm that SIDemo is running in the Host Emulator, then open SIDemo.modelx in the Design Tool.

On the Connection menu, click Connect to localhost via Telnet. Confirm that SIDemo is running in the
Host Emulator, then open SIDemo.modelx in the Design Tool.

In the Entity box, select CustomerPurchases and click the Recordset tab.

Click the Test button to open the Test Recordset dialog box.

From the Action box, select Select Record.

Click the Edit button to open the Filter String Edit dialog box.

In the Filter String Edit dialog box, select Customer from the Recordset fields box, click the = button,
and type the following in the Filter string box: Q. ARMSTRONG The filter string should appear as
follows: CustomerList.Customer = "Q. ARMSTRONG"

Click OK.

In the Test Recordset dialog box, click Execute.

If the selection is successful, the record contents for Q. ARMSTRONG are displayed on the terminal screen
along with the following message:

The selection operation reached an expected destination.

This action is the analog of the SelectRecordByFilter method.

If the record exists on an entity that does not contain any defined recordsets, the Test Recordset
dialog box closes.

Note

1.

2.

3.

4.

5.

6.

7.

8.

9.

Note

•

•

4.6.3 Adding Recordsets to an Entity

- 126/141 -

To select a specific record by index in a recordset:
This action is the analog of the SelectRecordByIndex method. If the record exists on an entity that does
not contain any defined recordsets, the Test Recordset dialog box closeS.

Follow the procedures described in Step 1 through Step 4 above.

From the Action box, select Set Current Record Index.

In the Set the current record index to box, type 3 , and click Execute. To check that your current
record index is set to the line number you want, view the indicator (for example, Current record index:
<line number> at the bottom of this dialog box.

Select Select Record from the Action box and click Execute.

If the select is successful, the record contents for Q. ARMSTRONG is displayed on the terminal screen along
with the following message:

The selection operation reached an expected destination.

Update Current Record

To update the current record in a recordset:

Open Purchases.modelx in the Design Tool.

On the Connection menu, choose Connect to localhost via Telnet.

In the Entity box, select CustomerPurchases and click the Recordset tab.

Click the Test button to open the Test Recordset dialog box.

From the Action box, select Set Current Record Index.

In the Set the current record index to box, type 2 .

Click Execute. To check that your current record index is set to the line number you want, view the
indicator (for example, Current record index: <line number>) at the bottom of this dialog box.

From the Action box, select Update Current Record and click Execute. Look in the Update current
record box and notice that Select appears in the Field column and the Value column is blank.

In the Value column, Type 1 and then click Execute.

The value you entered (1), is displayed on line 3 of the Select column in the Terminal window.

To test any scrolling operations that have been defined, click any of the available buttons in the
Perform Scrolling Operation box. If there are no scrolling operations in the recordset, the buttons
are unavailable.

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

8.

9. 9.

Tip

4.6.3 Adding Recordsets to an Entity

- 127/141 -

Set Current Record Index

To set the current record index of a recordset:

Confirm that SIDemo is running in the Host Emulator.

In the Design Tool, open SIDemo.modelx .

On the Connection menu, click Connect to localhost via Telnet.

In the Entity box, select CustomerPurchases and click the Recordset tab.

Click the Test button to open the Test Recordset dialog box.

From the Action box, select Set Current Record Index.

In the Set the current record index to box, type 2 .

Click Execute.

To check that your current record index is set to the line number you want, view the indicator (for
example, Current record index: <line number>) at the bottom of this dialog box.

From the Action box, select Fetch Records and click Execute. Look in the Fetch returned box and
notice that records were fetched beginning with line 3: Q. ARMSTRONG appears in the Customer
column.

To test any scrolling operations that have been defined, click any of the available buttons in the
Perform Scrolling Operation box.

4.6.4 Defining Entities and Recordsets for Procedures
Host Integrator fulfills SQL queries from client applications by navigating to the pertinent entities in a
host application that contain the table data and either reading, modifying, or deleting the data. A
procedure's definition must specify all entities and recordsets that contain table data.

In addition to defining the entities and recordsets that contain table data, you can also define branching
entities. These entities provide some flexibility for a procedure when it is traversing through a host
application, as well as error entities that you can use to trap errors in a procedure.

Adding Entities to a Procedure

You must add every entity to a procedure that contains the attributes and/or recordset field that
the procedure is able to query.

Adding Recordsets to a Procedure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Note

• •

• •

4.6.4 Defining Entities and Recordsets for Procedures

- 128/141 -

Recordsets are areas on an entity that contain dynamically changing information, usually scrolling
sets of data that are a result of a data fetch.

Adding Branch Entities to a Procedure

Use branch entities in procedures when an operation has alternate entity destinations. There are
some cases where traversal is not deterministic, for example, when an operation has alternate
destinations defined. These alternate destinations can be added as branch entities in a procedure.
When the operation is executed at runtime, the path the procedure takes is determined by which
branch entity is recognized after the operation completes. If none of the branch entities is
recognized, the procedure fails.

Adding Error Entities to a Procedure

Error Entities are screens containing patterns that indicate an error has occurred in the
procedure. You can define error entities by purposely entering bad data in a host application and
capturing the resulting screen as an entity. Adding one or more error entities to a procedure is a
good way to build error checking into your model.

More information

Inserting a Recordset

Inserting an Error Entity

Inserting a Branch Entity

4.6.5 Creating Descriptions for Entity Definitions
The following options allow you to include descriptions in any exported documentation. This data is
included in Web Builder projects or any documentation generated using Export options. This applies to
Advanced Attribute Properties, Advanced Operation Properties, Advanced Recordset Properties, and
Advanced Recordset Field Properties.

Click Advanced Properties next to the Name box on the corresponding Attribute, Operation,
Recordset, and Recordset Field tabs to open these dialog boxes.

• •

• •

•

•

•

4.6.5 Creating Descriptions for Entity Definitions

- 129/141 -

4.7 Adding Operations to an Entity
After you've created an entity and have added patterns and attributes to that entity, you're ready to add
or edit an operation.

Object names for entities, attributes, operations, recordsets, recordset fields, and, variables are not
case sensitive.

To add or edit an operation:

On the Operation tab, click the New Operation button in the Name box. By default, the operation is
named Operation_1 .

To change the name, select it and type a new name in the Name box.

Configure your new operation in the Destination box, Command list box, and Properties boxes.

After configuring your operation, click Apply to save your changes.

To copy an operation:
You can copy the operation to create another that is similar.

Select the operation you want to copy.

Click the list next to the New Operation button and select Create Copy. A new operation with a similar
name and a number appended to the end is created (for example, ToMainMenu_2).

Modify the new operation so that it is distinguishable from the operation on which it is based.

More information

Adding entities to a model

4.7.1 Mapping Operations
The Design Tool provides several commands that enable advanced configuration of entities in the host
application model. To edit an existing operation, click the Operation tab and then click the Edit button
to open the Operation Edit dialog box.

See Operation command summary for a complete list of available commands.

Tip

1.

2.

3.

4.

1.

2.

3.

•

4.7 Adding Operations to an Entity

- 130/141 -

4.7.2 Reset Current Recordset
This operation can be used when multiple database records have the same entity definition but
scrolling changes entity attributes and entity recordset contents. To ensure that new records are
fetched, add the Reset Recordset command in a scrolling operation before the actual keystroke that
performs the scroll.

To use Reset Current Recordset:

On the Operation tab, create a Down operation and rename it DownReset . If you already have a Down
operation on the entity, you can click Copy Operation and rename it DownReset . For an IBM host, the
operation looks like this.

CheckOperationConditions

TransmitTerminalKey rcIBMpf2Key

For VT, the terminal key is VTNextPage ; for HP, the terminal key is HPPageDown .

Add the ResetRecordset command as the second line of the DownReset operation. The operation for
an IBM recordset reset looks similar to the following:

CheckOperationConditions

ResetRecordset "<recordsetname>"

TransmitTerminalKey rcIBMpf2Key

More information

Adding Recordsets to an Entity

4.8 Tables and Procedures

1. 1.

Note

2. 2.

•

4.7.2 Reset Current Recordset

- 131/141 -

4.8.1 Overview
Using tables and procedures in your host application model enables you to create a database
abstraction of the host data. Client applications can then query this data using a Verastream connector
to interact with the model.

A table is a structure that contains columns that are used as input and output parameters for
procedures. Typically, table columns are named to match their corresponding model attributes and
fields.

A procedure defines how Host Integrator locates, retrieves, updates, inserts, and/or deletes data when
it fulfills a request submitted by a client application using a Host Integrator API.

Tables and procedures are interlocked functionally. Tables are a way of "organizing" host data into a
database-like view of the data, and procedures manipulate that data. The only way to access the
abstracted table data is through a procedure.

Client applications interact with tables and procedures using either a subset of the industry standard
Structure Query Language (SQL), or by interacting directly with the procedures. You can access the data
in your host applications via SQL queries even if your host applications are not designed to respond to
SQL queries.

SQL Overview

Tables Overview

Procedures Overview

SQL Overview
With the Table/Procedure feature, you can abstract your host application so that client applications can
perform queries using a subset of the industry standard Structure Query Language (SQL). This makes it
possible for you to access the data in your host applications via SQL queries, even if your host
application is not designed to respond to SQL queries.

In a query statement, client applications can select, update, insert, and delete data in the host
application by specifying a context, a set of input parameters, and a set of desired output parameters in
the form of an SQL statement. Using this statement Host Integrator determines the proper query to run
and returns the desired results.

Use the table option to set up a table definition consisting of a set of columns. Use procedures to tell
Host Integrator how to navigate to the host application screens where the data resides and pass any
commands to the host application necessary to select, update, insert, or delete the host data. Once
abstracted, the host application model responds to SQL queries from client applications in exactly the
same way that a true SQL database does.

•

•

•

4.8.1 Overview

- 132/141 -

Procedure execution does not require SQL--see Executing Procedures Using Connector APIs.

How Host Integrator Fulfills SQL Queries
When the Host Integrator receives an SQL query from a client application, it determines which
procedure or set of procedures it must use to satisfy the query, and then executes those procedures.

You can use any VHI procedure type (SELECT, UPDATE, DELETE, or INSERT) to modify host data, but only
a SELECT procedure type can return data.

For SELECT statements, Host Integrator will use the necessary procedures to return set of data that
exactly matches the WHERE clause in the query. Any data that does not exactly match the WHERE clause
is thrown out during a process known as post-fetch filtering. This filtering is not used for LIKE
expressions, thus all data found by the procedure concerning a LIKE expression is returned. This
implementation of LIKE diverges from the SQL-92 standard.

SQL Syntax
Host Integrator supports a subset of the SQL 92 standard for SELECT, UPDATE, INSERT, and DELETE
statements. This section describes the syntax convention that Host Integrator supports.

Case Sensitivity
The SQL-92 language standard requires that the names of objects be compared without regard to letter
case. Comparisons between column values, however, are case sensitive by default.

If you do not see the results you expect because of case sensitivity, you can add COLLATE
CASE_INSENSITIVE to explicitly specify a case-insensitive comparison of text column values. In this
example, the state value ('ri') will be compared without case:

SQL keywords such as JOIN or ORDERBY are recognized by Host Integrator, but not supported. You
can extend Host Integrator's native SQL support using an event handler. For example, you could do
the following in an event handler:

Pass in an SQL string.

Note

`SELECT Name, ContractDate, AcctNumber FROM Accounts WHERE MiddleInitial =
'c' AND
State = 'ri' COLLATE CASE_INSENSITIVE AND LastName = 'smith'

Note

1.

4.8.1 Overview

- 133/141 -

Remove the portions not supported by Verastream.

Pass the remaining SQL to the model for processing.

Modify the results based on the custom extensions from the original client string.

Table and Column Names
Table and column names in Host Integrator are identified using the following convention:

TableName=Identifier

ColumnName=Identifier

Identifier=RegularIdentifier | DelimitedIdentifier

A regular identifier is a string of not more than 128 characters; the first character must be a letter
(upper or lower case), while the rest can be any combination of upper or lower case letters, digits, and
the underscore character. No SQL reserved words can be used.

A delimited identifier is any string of not more than 128 characters enclosed in double quotes. The
double quote character is represented by two immediately adjacent double quotes.

Table and column names are not case sensitive.

Literals
Literal={CharacterString | Number }

Character strings are written as a sequence of characters enclosed in single quotes. A single quote
character is represented by two immediately adjacent single quotes. Any comparisons between literals
and columns must be between the same type: strings can only be compared to strings and numbers
can only be compared to numbers.

Expressions
Expression = { Expression + Expression | Expression - Expression | Expression * Expression | Expression /

Expression | - Expression | (Expression) | Literal | ColumnName }

Conditions
Condition = { Condition OR Condition | Condition AND Condition | NOT Condition | (Condition) |

Comparison }

Comparison = Expression { = | <> | < | <= | > | >= | LIKE } Expression

SimpleCondition = { SimpleCondition OR SimpleCondition | SimpleCondition AND SimpleCondition |

(SimpleCondition) | SimpleComparison)

SimpleComparison = ColumnName { = | LIKE } Literal

2.

3.

4.

4.8.1 Overview

- 134/141 -

A distinction is made between Conditions and SimpleConditions because only SimpleConditions can be
used as inputs to a procedure. SimpleConditions can be used in any WHERE clause, but Conditions may
be used only in a SELECT statement's WHERE clause because the results can be filtered. Both Conditions
and SimpleConditions can refer only to columns from one table. Joins and subqueries (SELECT
statements inside another SQL statement) are not supported.

In the examples for the SELECT, UPDATE, INSERT, and DELETE statements assume that the SQL
statements used with a model can resolve to a procedure in the model.

SELECT Statement Syntax
Use the following syntax for SELECT statements (Arguments between ([]) are optional and those
between ({ }) are required:

SELECT [DISTINCT] {column-list} FROM {table} [WHERE {condition}] [ORDER BY {column-list}]

Arguments

[DISTINCT] -- Specifies that all rows returned be unique. If there are two identical rows, one is
removed from the output.

{column-list} -- Any valid table column name(s).

{table} -- The name of the table.

{condition} -- Any condition or simple condition.

SELECT statements return only those rows exactly matching the WHERE clause. The results are sorted in
the order specified in the ORDER BY clause. For procedure resolution, the table name is taken from the
FROM clause, the filter parameters are taken from the WHERE clause, and the outputs are taken from
the SELECT and WHERE clauses.

Examples

SELECT * FROM Patients WHERE AdmitNum = 20000

SELECT AdmitNum, SSN FROM Patients WHERE LastName LIKE 'W'

SELECT DISTINCT AdmitNum, SSN FROM Patients WHERE LastName LIKE 'W'

SELECT * FROM Patients WHERE LastName LIKE 'W' ORDER BY AdmitNum

SELECT * FROM Patients WHERE LastName LIKE 'W' AND FirstName = 'JOHN' ORDER BY AdmitNum

Note

• •

• •

• •

• •

4.8.1 Overview

- 135/141 -

UPDATE Statement Syntax
Use the following syntax for UPDATE statements:

UPDATE {table} SET {{column} = {value} [, ...]} [WHERE {simple-condition}]

Arguments

{table} -- The name of the table.

{column} -- Any valid table column.

{value} -- Valid values are characters and numbers.

{Simple-condition} -- Simple conditions can contain characters and numbers and comparisons (=,
<>, <, <=, >, and =).

UPDATE statements update all records matching the WHERE clause with the values in the SET clause.
For procedure resolution, the table name is taken from the UPDATE clause, the filter parameters are
taken from the WHERE clause, and the data parameters are taken from the SET clause.

Arguments between ([]) are optional and those between ({ }) are required.

Example
UPDATE Patients SET FirstName = 'Colin', LastName = 'Moulding', AdmitYear = 1999

WHERE AdmitNum = 56564

INSERT Statement Syntax
Use the following syntax for INSERT statements:

INSERT INTO {table} [({column-list})] VALUES {value-list}

Arguments

{table} -- The name of the table.

{Column-list} -- Any valid table column name(s). If no column list is defined, the order of the
columns is taken from the table definition.

{values-list} -- Valid values are characters and numbers.

INSERT statements add a record to the specified table. For procedure resolution, the table name is
taken from the INSERT INTO clause. Data parameters are taken from the VALUES clause.

Arguments between ([]) are optional and those between ({ }) are required.

• •

• •

• •

• •

• •

• •

• •

4.8.1 Overview

- 136/141 -

Examples

INSERT INTO Patients (AdmitNum, FirstName, LastName, Room) VALUES (31415, 'Doe', 'John', '123')

INSERT INTO Patients (AdmitNum, FirstName, LastName, Room) VALUES (31415, 'Doe', 'John', '123'),

(31416, 'Doe', 'Jane', '131')

DELETE Statement Syntax
Use the following syntax for DELETE statements:

DELETE FROM {table} [WHERE {simple-condition}]

Arguments

{table} -- The name of the table.

{Simple-condition} -- Simple conditions can contain characters, numbers, and comparisons (=, <>,
<, <=, >, and >=).

The delete statement deletes a record from the specified table. For procedure resolution, the table
name is taken from the DELETE FROM clause and the filters are taken from the WHERE clause.

Arguments between ([]) are optional and those between ({ }) are required.

Example

DELETE FROM Patients WHERE AdmitNum = 31415

SQL Syntax Restrictions
Host Integrator supports the SQL-92 arguments and features, with the following exceptions:

SELECT statements containing GROUP BY or HAVING clauses.

DEFAULT and NULL may not be used for column values in UPDATE or INSERT statements.

INSERT statements that specify inserting DEFAULT VALUES.

Nested queries are not supported.

Parameter references in expressions are not supported.

The AVG, BIT_LENGTH, CASE, CAST, CHAR_LENGTH, CHARACTER_LENGTH, COALESCE, CONVERT,
COUNT, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, EXTRACT, LOWER,
MAX, MIN, NULLIF, OCTET_LENGTH, POSITION, SESSION_USER, SUBSTRING, SUM, SYSTEM_USER,
TRANSLATE, TRIM, and UPPER functions are not supported in expressions.

JOIN operations are not supported.

The SET clause can only accept literal values.

• •

• •

•

•

•

•

•

•

•

•

4.8.1 Overview

- 137/141 -

For UPDATE and DELETE statements, all comparisons in the WHERE clause must be between
columns and literals.

For SELECT statements, you can use any valid expression in the WHERE clause. However, only
comparisons between columns and literals will be used in a procedure. The other expression will be
used to filter the output of the procedure(s). Any data that does not exactly match the WHERE clause
is thrown out during a process known as post-fetch filtering.

Host Integrator supports a usage of the LIKE operator that turns off post-fetch filtering. In this case,
LIKE is equivalent to =, but post-fetch filtering is not performed on the column. if you expect to get
everything the host sends, use LIKE. If you want to filter the results (including filtering for case
sensitivity), use =. For example:
SELECT Name, ContractDate, AcctNumber FROM Accounts WHERE MiddleInitial =
'c' AND State LIKE RI AND LastName = 'smith'

SQL predicate (logical test) restrictions

Only TRUE predicates are allowed. The forms IS NOT * TRUE and IS FALSE are not supported.

The BETWEEN and NOT BETWEEN predicates are not supported.

The IN and NOT IN predicates are not supported.

The LIKE operator is used to provide an input to a procedure without post-fetch filtering. The NOT
LIKE and LIKE … ESCAPE predicates are not supported.

Predicates involving quantifiers (ALL, SOME, ANY, EXISTS, UNIQUE) are not supported.

Predicates involving MATCH are not supported.

Tables Overview
Using Host Integrator tables enables you to create a database abstraction of your host application so
that client applications can query it using a subset of the industry standard Structure Query Language
(SQL). Table columns are usually associated with attributes and fields in the Host Integrator model. This
makes it possible for you to access the data in your host applications via SQL queries even if your host
application is not designed to respond to SQL queries. Host Integrator tables themselves don't contain
data; rather they provide a database-like view of the underlying host data.

In a query statement, the client application specifies a table, a set of input parameters, and a set of
desired output parameters in the form of an SQL statement. From this statement Host Integrator
determines the appropriate procedure or procedures to run in order to return the desired results.

Host Integrator accomplishes this through the use of tables and procedures. Using the Tables dialog
box, you can create one or more tables for a host application. Each table can have one or more
associated procedures. The procedures are comprised of entity navigation paths and parameter
mappings that tell Host Integrator how to read, write, and modify host data represented by the table.

•

•

•

•

•

•

•

•

•

4.8.1 Overview

- 138/141 -

Use the Table Wizard or the Tables dialog box to create a database abstraction of the Host Integrator
model.

When you export the documentation for your host application model, a list of all table and procedure
names is generated. Use this list to access the tables and procedures from one of the Host Integrator
APIs

More information

Creating tables

Procedures Overview
Procedures tell Host Integrator how to fulfill the queries it receives from client applications. The
procedures you create for your table determine what host data can be read, inserted, updated, or
deleted. Each procedure has a unique signature that describes what it does. The signature includes a
procedure type (SELECT, UPDATE, INSERT, and DELETE) and a set of parameters. Host Integrator uses
these signatures to translate SQL statements into a set of procedures.

You can use any VHI procedure type (SELECT, UPDATE, DELETE, or INSERT) to modify host data, but only
a SELECT procedure type can return data.

Procedures use one or two of the three types of parameters:

Filter parameters— Specify which records will be acted upon

Data parameters— Specify new values for the records

Output parameters— Specify what values to return

The key component of a procedure's definition is the parameter mapping. Each parameter in a
procedure corresponds to a column in the table and is mapped to an attribute, a recordset field, or
another parameter. Each procedure has a predefined traversal path through the host application;
during the traversal operations, data is exchanged between parameters and attributes and recordset
fields. The following chart shows which parameters are used in which procedures:

•

•

•

•

Procedures Filter Parameters Data Parameters Output Parameters

SELECT X X

UPDATE X X

INSERT X

4.8.1 Overview

- 139/141 -

Procedures should be as complete as possible: if you do not provide a procedure for a particular
operation, it is not be possible for a client application to access or modify that table data. Procedures
should also contain robust error handling to recover from unexpected or incomplete queries. Using the
Procedure Editor, you can include error entities that define errors returned from a procedure.

Use the Procedure Wizard to quickly create a basic procedure. For more complicated procedures, create
the procedure using the Tables dialog box and the Procedure Editor.

After adding procedures to your model, you can use Web Builder to quickly and easily generate a web
application or a component interface, such as a web service or JavaBeans, based on the procedures of a
host application model.

When creating procedures to be used for generating a web application with Web Builder, you must
have unique procedure names throughout the model. Do not create a procedure with the same
name for two different tables.

More information

Creating procedures

Parameter mapping

Creating tables

4.8.2 Creating Tables
Using Host Integrator tables enables you to create a database abstraction of your host application so
that client applications can query it using a subset of the industry standard Structure Query Language
(SQL). Table columns are usually associated with attributes and fields in the Host Integrator model. This
makes it possible for you to access the data in your host applications via SQL queries even if your host
application is not designed to respond to SQL queries. Host Integrator tables themselves don't contain
data; rather they provide a database-like view of the underlying host data.

In a query statement, the client application specifies a table, a set of input parameters, and a set of
desired output parameters in the form of an SQL statement. From this statement Host Integrator
determines the appropriate procedure or procedures to run in order to return the desired results.

Procedures Filter Parameters Data Parameters Output Parameters

DELETE X

Note

•

•

•

4.8.2 Creating Tables

- 140/141 -

Host Integrator accomplishes this through the use of tables and procedures. Using the Tables dialog
box, you can create one or more tables for a host application. Each table can have one or more
associated procedures. The procedures are comprised of entity navigation paths and parameter
mappings that tell Host Integrator how to read, write, and modify host data represented by the table.

Use the Table Wizard or the Tables dialog box to create a database abstraction of the Host Integrator
model.

When you export the documentation for your host application model, a list of all table and procedure
names is generated. Use this list to access the tables and procedures from one of the Host Integrator
APIs.

Creating a table using the Table dialog box

In the Design Tool, click Tables on the Model menu to open the Tables dialog box.

Then, click New in the Tables dialog box and select Table in the Create a new table or procedure dialog
box that appears.

Type a name for the new table in the Name box. This is the name Host Integrator will use to identify the
table in the Table Editor and that client applications use to query the host application model.

Type a description of the table in the Description box. To add columns to the table:

Click the Add Column (+) button to the right of the Columns box to add one or more new columns.

In the Name field, replace the auto-generated column name (Column1, Column2, etc) with a
meaningful name, typically the name of the attribute or recordset field that this column will be
mapped to in a procedure.

Select the column's data type by clicking the down arrow in the Data Type entry area and selecting
one of the options: Float, Integer, or Text.

Click the Key box to identify this column as the key.

If required, specify the column's minimum and maximum values in the Column properties
minimum/maximum boxes.

Enter a description of the column in the Description box.

If you want the Host Integrator to return a partial set of data to a querying application using SQL,
select the Allow SQL SELECT statements to return a subset of columns when all columns are
requested box. If you clear this check box, Host Integrator returns an error to a querying application
if it cannot return all columns when a wildcard * is specified in SQL.

You can create tables using the Table Wizard, which prompts you for the necessary information.

1.

2.

3.

4. 4.

• •

• •

• •

• •

• •

•

5. 5.

Note

4.8.2 Creating Tables

- 141/141 -

	Verastream Host Integrator
	1. Welcome to Host Integrator
	1.1 Terminal Sessions from the Start Menu
	1.2 Referencing Web Service Files
	1.3 Referencing API Documentation

	2. Using the Design Tool
	2.1 Implementation Options
	2.2 Design Tool Features
	2.3 Connecting to a host
	2.4 Using models to encapsulate a host application
	2.5 Abstracting a host application
	2.6 Providing core runtime services
	2.7 Recording command lists
	2.8 Implementing preferences
	2.9 Providing online and offline design modes
	2.10 Working collaboratively
	2.11 Adding event handlers

	3. Planning the Host Integrator Project
	3.1 Planning the Host Integrator Project
	3.2 Host Integrator Components
	3.2.1 Development Kit
	3.2.2 Server Kit
	3.2.3 Adding, Removing, and Repairing Components
	3.2.4 Starting and Stopping Services
	To start or stop services from the Administrative Console
	To start or stop services from the command line

	3.3 Development Process
	3.4 Learn to Use Host Integrator
	3.4.1 Goal
	3.4.2 Defining the Business Need
	3.4.3 Developing Model Requirements and Mapping the Data
	3.4.4 Building and Deploying a Simple Model
	Connect to Host Using a Login Command List
	About the Design Tool
	CICS application navigation tips

	Creating a Login Command List
	To create a command list to log on to CICS:

	Editing the Login Command List
	To edit the login command list:

	Configuring the Login Command List to Load Automatically
	To configure the login command list to load on connection:
	To test the login command list:

	Create Entities From Host Screens
	To add a screen as an entity:

	Creating a Pattern for Entity Recognition
	To create patterns for the Main entity:
	To create a pattern using an exclude:
	To add this screen (with data) as a new entity:
	To add patterns for the second entity, NameSearchResults:

	Configure Attributes for Data Entry and Retrieval
	To create attributes:
	To add the attributes:

	Create Operations for Host Navigation
	To create a return operation:

	Create Recordsets for Scrolling Data
	Defining the position and layout of the recordset
	Defining the scrolling operation through the recordset data
	Adding a page-down operation
	To define a page-down operation for the AccountList recordset:
	Using the page-down operation
	To associate a specific operation with a procedure
	Terminating the page-down operation
	To create the pattern
	To signal the end of the PageDown operation

	Creating Recordset Fields
	To add fields to the AccountList recordset

	Create Tables and Procedures for Abstraction Level Queries
	To create a table

	Create Procedures to Retrieve Data
	To create a procedure that retrieves the account information

	Test and Deploy the Model
	To run a procedure test
	To run an SQL test
	Testing Web services

	Extending Your Model with Event Handlers
	About Deploying Host Application Models
	Deploying MyModel.modelx

	3.4.5 Creating a Web Builder Project and Generating a Web application
	To build an HTML 5 Web application For CICSAccts
	Deploying the Project to the Enterprise

	3.4.6 Congratulations!

	4. Using the Design Tool
	4.1 The Modeling Process: Getting Started
	4.1.1 Creating a Model
	4.1.2 Configuring a Model

	4.2 Work Collaboratively
	4.2.1 Using source control to manage and merge changes
	4.2.2 Things to remember
	4.2.3 Importing model elements
	4.2.4 Optional Files

	4.3 Setting Up a Connection
	4.3.1 Design Tool Connection Settings
	Entity Window Options
	Terminal Window Menus

	4.3.2 Entity Settings
	4.3.3 Using SSH: Overview
	Data Encryption Standards
	Data Integrity
	Digital Signatures
	The known_hosts file
	How does SSH work?
	SSH Authentication Options
	Using Model Variables for SSH Authentication
	Setting model variable values in the Administrative Console

	Public Key Authentication
	Enter Username and Password

	4.3.4 Using SSL/TLS
	How to enable TLS/SSL encryption
	Enabling FIPS 140-2 Validated Encryption
	Certificate Checking
	Importing certificates
	Validation Errors

	Altering the configuration of TLS connections
	Disabling TLS 1.3
	Enabling SSL 3.0, TLS 1.0, or TLS 1.1
	Modifying the ciphers offered to the host
	Client Authentication
	Changing the Linux trust store
	Disabling Certificate Validation

	4.4 Configuring Sessions
	4.4.1 Configuring a Host Session
	Configuring a 3270 Terminal Session
	Advanced 3270 Telnet and Telnet Extended dialog boxes

	Configuring a 5250 session
	Advanced 5250 Telnet dialog box

	Configuring a VT Session
	Configuring an HP Session

	4.4.2 Customizing the Terminal
	Customizing the 3270 Terminal
	Customizing the 5250 Terminal
	Customizing the VT Terminal
	Configuring VT Emulation Options
	Advanced VT SSH Options

	Advanced VT or HP Telnet
	VT Control Functions
	Default VT Keyboard Mapping
	VT Screen Setup

	Customizing the HP Terminal
	Configuring HP Emulation Options
	Configure HP Keyboard Options

	Identifying Commands
	Creating a Custom Code Page

	4.4.3 Mapping the Keyboard
	Mapping the Keyboard
	Changing the PC or Terminal Keyboard
	Mapping a Keystroke

	Mapping a Keystroke
	To identify a keystroke
	Removing a Keystroke's Mapping
	Resetting a Keystroke's Mapping
	Restoring the Default Keyboard Mapping
	Determining Keyboard Mapping
	Linking a Keystroke to a Command

	4.4.4 Setting Colors and Fonts
	Configuring Colors
	Setting Colors with a Mouse
	Setting Colors for an Attribute

	Configuring Display Fonts
	Fonts Installed by the Host Integrator

	4.4.5 Command List Edit
	To create a login command list
	To create a logout command list
	Build Command

	4.5 Importing Model Elements
	4.5.1 Workflow
	4.5.2 Terminology and Best Practices for Importing Models
	Terminology
	Best Practices
	Frequently Asked Questions

	4.5.3 Copy Objects
	Avoiding Problems

	4.5.4 Copy Entity
	To Copy an Entity

	4.6 Adding Entities to a Model
	To add an entity to a model:
	4.6.1 Adding Patterns
	To add a pattern to an entity:
	To copy a pattern:

	4.6.2 Adding Attributes
	To add an attribute to an entity:
	To copy an attribute:
	To add colors to an attribute:

	4.6.3 Adding Recordsets to an Entity
	To add a recordset to an entity:
	To copy a recordset:
	Testing Recordsets
	Fetch Records
	To test a record fetch:

	Inserting a Record
	To insert a specific record or multiple records into a recordset:

	Selecting a Record
	To select a specific record by condition in a recordset:
	To select a specific record by index in a recordset:

	Update Current Record
	To update the current record in a recordset:

	Set Current Record Index
	To set the current record index of a recordset:

	4.6.4 Defining Entities and Recordsets for Procedures
	4.6.5 Creating Descriptions for Entity Definitions

	4.7 Adding Operations to an Entity
	To add or edit an operation:
	To copy an operation:
	4.7.1 Mapping Operations
	4.7.2 Reset Current Recordset
	To use Reset Current Recordset:

	4.8 Tables and Procedures
	4.8.1 Overview
	SQL Overview
	How Host Integrator Fulfills SQL Queries
	SQL Syntax
	Case Sensitivity
	Table and Column Names
	Literals
	Expressions
	Conditions
	SELECT Statement Syntax
	Arguments
	Examples

	UPDATE Statement Syntax
	Arguments
	Example
	INSERT Statement Syntax
	Arguments
	Examples

	DELETE Statement Syntax
	Arguments
	Example

	SQL Syntax Restrictions
	SQL predicate (logical test) restrictions

	Tables Overview
	Procedures Overview

	4.8.2 Creating Tables
	Creating a table using the Table dialog box

